Project, Bachelor and Master theses

The Chair of Fluid Mechanics offers different opportunities for students, graduates and students who are about to take their diploma, to assist in the education and research field.

Contact for numerical theses: Dr.-Ing. M. Meinke

Contact for experimental theses: Dr.-Ing. M. Klaas

Even in case there are no study, diploma, master, bachelor or project theses listed below, do not hesitate to contact the persons listed above.

Offered bachelor theses:

Validation of the flame-sound interaction ---
Development of a method for determining pressure fields from PIV dataDownload
In order to comply with the strict legal limits for emissions from internal combustion engines, significant improvements in engine emissions and efficiency are required. The consistent formation of an efficient mixture before ignition and a fast, stable combustion process are two significant elements impacting emissions and efficiency. Both factors are highly dependent on the turbulence in the combustion chamber and the cyclic fluctuations, called cycle-to-cycle variation (CCV). At AIA, flow measurements on a single-cylinder optical engine were conducted with a high temporal resolution in order to better comprehend on fundamental interactions and mechanisms of CCV. Non-invasive particle image velocimetry (PIV) was used to estimate the velocity field in the combustion chamber. In this measurement technique, tracer particles are added to the flow and illuminated with a laser. The particles’ emitted light is recorded by a camera b using a cross-correlation algorithm the velocity field from the camera images can be extracted. Now its your turn: In order to extract more information from the velocity fields, additional processing is necessary. The goal of this thesis is to develop a method that generates pressure data from velocity data. To do this, you’ll first do a thorough literature research to acquire an overview of the available approaches and weigh their benefits and drawbacks. Afterwards, your chosen method is implemented (in Python or Matlab). Then, your method will be applied to our engine data and the obtained pressure data will be analyzed with respect to their influence on the cyclic variation. Finally, your results will be summarized in a final thesis.
Aerodynamic parameters of speed skydiving---

Offered master theses:

Implementation of a transport equation for the air humidity to analyze nasal cavity flowsDownload
Methods to diagnose pathologies in the human respiratory system have evolved recently from mainly focusing on medical imaging data to the consideration of computational fluid dynamics (CFD). In the past, the thermal lattice-Boltzmann (TLB) solver of the simulation framework multiphysics Aerodynamisches Institut Aachen (m-AIA) has been frequently used to numerically qualify the nasal cavity by analyzing the fluid mechanical properties of the respiratory flow, such as the pressure loss, the temperature distribution, and the mass flux distribution. However, an important quantity that has not been considered so far in these studies is the humidity of the inhailed air. Dry nasal passages can lead to discomfort and irritated sinuses and in the worst case to lung infections.
Topics in multiphase flow simulations using the Lattice Boltzmann MethodDownload
Conservative interface tracking methods for multiphase flowsDownload
Using super-resolution networks to generate highly resolved computed tomography images from recordings with low resolutionsDownload
Numerische Analyse partikelbeladener turbulenter StrömungenDownload
Fast alle Strömungen, die in der Umwelt und Technik vorkommen, sind turbulent. Jedoch ist bereits die numerische Simulation einphasiger turbulenter Strömungen aufwendig, wobei es viele erfolgreiche Modellierungsansätze gibt. Eine noch größere Herausforderung besteht hingegen in der numerischen Analyse partikelbeladener turbulenter Strömungen. Trotz ihrer hohen Relevanz in Umwelt und Technik, sind vorhandene Modelle nur für vereinfachte Bedingungen gültig und eine Validierung steht oft noch aus. Ein wichtiger Anwendungsfall ist die numerische Auslegung einer Biomasse-Brennkammer. Dabei ist die Bestimmung der Aufheizraten, der Dynamik, und der turbulenten Durchmischung nicht-sphärischer Partikel entscheidend um den gesamten Verbrennungsprozess zuverlässig auszulegen. Die Generierung von hoch-aufgelösten Referenzdaten mit Hilfe von Simulationen und die Entwicklung von genauen Modellen für Anwender, sowie deren Validierung sind aktuelle Forschungsvorhaben, die am Aerodynamischen Institut intensiv verfolgt werden. Für dieses Projekt sind wir auf der Suche nach motivierten Masterarbeitern.
Numerical analysis of control of shock-wave / boundary layer interaction using air-jet vortex-generatorDownload
Multiphysics simulations with applications to aeroacousticsDownload
Injection and Turbulent Mixture Formation of Bio-Hybrid Fuels in Internal Combustion EnginesDownload
Landing gear noise mitigation using porous materialsDownload
Active drag reduction in turbulent boundary layer flows subjected to spanwise traveling transversal surface waves using learning-enhanced CFDDownload
Numerical analysis of turbulent particle-laden flowsDownload
Thermoacoustic Investigations of Hydrogen-Air FlamesDownload
Rim seal gap sealingDownload
Researching the multiphase flows of the Precise Electrochemical Machining (PECM) processDownload
Automated assistance for diagnoses and treatments in rhinologyDownload
Numerical simulation of biomass particles in turbulent flowDownload