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3.1.1 Definitions

• dynamic viscosity = viscosity coefficient of the fluid

• derivation for a Newtonian fluid: flow between two infinitely extended flat plates, 

lower plate is fixed, upper plate can move

→ for small deformations: tan γ ≈ γ = ∆a
∆y

Fig. 3.1: Derivation of the dynamic viscosity
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3.1.1 Definitions

→ with ∆a = ∆u ∙ dt; 

=> γ̇ = dγ
dt = ∆u ∙ dt

∆y ∙ dt = ∆u
∆y = du

dy with γ̇: shear velocity

→ with τ ∽ ∆u and τ ∽ 1
∆y : ⇒ τ ∽ ∆u

∆y = du
dy = γ̇

• the shear stress is proportional to the shear rate: → τ ∽ γ̇ ⇒ τ = η ∙ γ̇

with η: dynamic viscosity

• unit of the dynamic viscosity: [η] = [τ]
∂w
∂y

= g / (cm ∙ s²)
cm / (cm / s) = g

cm ∙ s = 1 Poise

• the normal stresses are identical in all directions and are equal to the static 

pressure: σx = σy = σz = p
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3.1.1 Definitions

• for non-Newtonian fluids: τ ≁ γ̇

→ there is no proportionality factor such as the dynamic viscosity

→ to characterize the flow properties: flow curve τ = f (γ̇)

Fig. 3.2: Flow curves for different fluid types
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3.1.1 Definitions

• visco-elastic fluids (non-Newtonian)

- the parallel layer flow can be described by a flow curve

- the normal stresses depend on the direction:

σx = − p∗ + f1 (γ̇2) σy = − p∗ + f2 (γ̇2) σz = − p∗

→ with p∗ = f γ̇ describing the isotropic part of the normal stress

→ for γ̇ = 0, this part is equal to the hydrostatic pressure p

- for γ̇ = 0: particles or molecules (e.g. RBCs) are suspended in the fluid with an 

arbitrary orientation
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3.1.1 Definitions

- for γ̇ ≠ 0: orientation phenomena can be observed

- when the shear stress returns to zero, the particles again are distributed with an 

arbitrary orientation → elastic effect

- in a shear field a reversible deformation of the particles can occur

→ elastic effects can be neglected!

→ In many cases: sufficient to determine the flow curve of the non-Newtonian fluid!

- pronounced, characteristic decrease of the pipe friction coefficient in a turbulent 

pipe flow
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3.1.2  Flow behavior of suspensions

• blood is not a pure liquid → bearer fluid (blood plasma) with suspended blood 

corpuscles (flexible)

⇒ blood = suspension of flexible particles of high concentration

• different models: 

1. Suspension of stiff spheres in a Newtonian fluid

2. Suspension with non spherical stiff particles (e.g. ellipsoids) in a shear field

3. Drops in a shear field
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3.1.2  Flow behavior of suspensions

1. Suspension of stiff spheres in a Newtonian fluid
• question: do stiff spheres influence the viscosity of the suspension?

ux1

ux2

friction
between fluid 

and sphere

„real“ velocity profile

„ideal“ velocity profile

y

x
Fig. 3.3: Effect of a stiff sphere to the velocity gradient in a shear field
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3.1.2  Flow behavior of suspensions

• due to friction exerted by the fluid on the sphere, the flow at points A and B can’t 

move around the sphere with the predetermined distribution profile

→ dashed velocity distribution profile (steeper velocity gradient 

between A and B)

• result: to produce a velocity difference ux2 - ux1 higher shear stresses are necessary 

compared to a homogenous fluid (without a sphere)

→ resistance to deformation of a suspension (“s”) with embedded stiff 

spheres is higher than that of a homogenous fluid (“fl”): ηs > ηfl
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3.1.2  Flow behavior of suspensions

• low particle concentration C:

• relative volume fraction of the spheres ≤ 1% (i.e., no interaction between the 

spheres)

→ ηs = η0 · (1 + 2.5C)

• flow behavior remains Newtonian

• medium particle concentration C:

• 1% < C ≤ 30%

→ ηrel = ηs/ η0 = 1/(1 + 2.5C) = 1 + 2.5C + 6.25C² + … (Oliver, 1953)

• ηrel increases quickly with concentration C

• flow behavior still remains Newtonian up to C = 40%
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3.1.2  Flow behavior of suspensions

2. Suspension with non-spherical particles (e.g. Ellipsoids) in a shear field

y

x

wx (y)

Fig. 3.4: Possible orientations of ellipsoids in a shear field
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3.1.2  Flow behavior of suspensions

• particles are mostly oriented s.t. the long axis is parallel to the shear plane

• rotation of the Ellipsoids in the shear field is hindered strongly

• occasionally a turn down process takes place

→ increases impulse transport in y-direction

→ steeper velocity gradients in the fluid

→ higher viscosities

• for low concentrations:

→ ηrel = 1 + K1 · C with K1 > 2,5 (grows with asymmetry)

• for small particles (<1 µm) the Brownian movement plays a role
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3.1.2  Flow behavior of suspensions

3. Behavior of drops in a shear field
• equilibrium between:

→ tension on the surface borders

→ pressure distribution ∆PG due

to dynamic flow relations in and 

around the drop

→ deformation of the drop

• increase or decrease of the viscosity 

ηrel depends on the viscosity relation 

between the carrier fluid and the drop Fig. 3.5: Drop in a shear field



Biological and Medical Fluid Mechanics I |  Dr.-Ing. Michael Klaas
m.klaas@aia.rwth-aachen.de | http://www.aia.rwth-aachen.de 
SS 2018

Lecture contents

16 of 67

3. Rheology of blood Exercise

3.1 Classification of blood
3.1.1 Definitions
3.1.2 Flow behavior of suspensions
3.1.3 Blood as a suspension of flexible particles

3.2 Viscosity of blood
3.2.1 Viscosity measurement methods
3.2.2 Viscosity models for blood plasma and whole blood
3.2.3 Influences on the viscosity of blood

3.3 Non-Newtonian blood analog fluid
3.3.1 Requirements and composition
3.3.2 Xanthan gum
3.3.3 Influence of temperature



Biological and Medical Fluid Mechanics I |  Dr.-Ing. Michael Klaas
m.klaas@aia.rwth-aachen.de | http://www.aia.rwth-aachen.de 
SS 2018

3.1 Classification of blood

17 of 67

3.1.3  Blood as a suspension of flexible particles

1. Carrier fluid:
• plasma = aqueous solution of macromolecules (proteins)

→ macromolecules orient and deform under shear forces

→ configuration changes depending on shear velocity

→ viscosity change of the solution depends on shear velocity

=> non-Newtonian flow behavior! 
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3.1.3  Blood as a suspension of flexible particles

2. Suspension of erythrocytes in blood plasma:
• remaining blood corpuscles can be neglected from a rheological point of view

• main characteristics:

- particle concentration C > 40% (Hct = 45%)

- particles can not be considered as spheres 

→ orientation phenomena, turn-over processes

- particle shape depends on the shear stress

- membrane can rotate around the viscous cell content (see Bull, Fischer)

- Behavior of a single RBC in the shear field is similar to that of a drop in a liquid 

of low viscosity (see Taylor)
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3.1.3  Blood as a suspension of flexible particles

Particle behavior as a function of the shear stress

1. At rest (no shear stress)

• aggregation:

→ money-roll formation

→ network formation

• aggregation depends on proteins 

in the plasma (e.g. by infections)

Fig. 3.6: Money roll formation (left) and network 
formation (right) of RBCs
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3.1.3  Blood as a suspension of flexible particles

Particle behavior as a function of the shear stress

2. Low shear stresses

• aggregates are torn apart

→ high viscosity

• blood cells still behave as stiff discs 

and perform corresponding librations

→ relatively high viscosity

Fig. 3.7: Tumbling of the RBC when a shear is 
applied to the flow
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3.1.3  Blood as a suspension of flexible particles

Particle behavior as a function of the shear stress

3. Higher shear stresses

• starting deformation and alignment 

in the shear field

• membrane rotates around the cell 

content

→ viscosity decreases

Fig. 3.8: Rotation of the membrane of the RBC 
around its content
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3.1.3  Blood as a suspension of flexible particles

Particle behavior as a function of the shear stress

4. Further increase of shear stress

• stronger deformation towards slim 

bodies until maximum deformation 

degree is reached (depending on 

surface/volume-relation)

→ then: no further decrease of 

viscosity

→ whole blood possesses a viscosity depending on the shear rate:  η= f(γ̇)

→ non-Newtonian flow behavior!

Fig. 3.9: Stronger deformation towards slim bodies
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3.2.1  Viscosity measurement methods

1. Sphere drop viscosimeter
• balance of forces for a constant drop velocity of the sphere: ∑ F = G − L − D = 0

- G: weight G = ρs ∙ g ∙ 4
3 � π ∙ d²

8

- L: lift (Archimedes) L = ρF ∙ g ∙ 4
3 � π ∙ d²

8

- D: drag D = cD ∙ π ∙ d2
4 ∙

ρF
2 ∙v²

→ cD = 3 ∙ g ∙ d
2 ∙ ρF∙ v² ∙ ( ρs− ρF)

G

LD

d

Fig. 3.10: Sphere drop viscosimeter
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3.2.1  Viscosity measurement methods

• Stokes: relationship between Reynolds-Number and Drag coefficient of a sphere in 

a Newtonian fluid:

→ cD = 24
Re = 24 � η

ρF ∙ d ∙ v

with the previous result:

→ η = g ∙ d²
16 ∙ v ∙ ( ρs− ρF)

→ limitation: sphere drop viscosimeter can only be used for a Newtonian fluid!
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3.2.1  Viscosity measurement methods

2. Capillary viscosimeter
• assumptions:

- laminar layer flow

- steady flow: v ≠ f(t)

- constant pressure gradient

• balance of forces for an infinitesimal volume element:   ∑ F = 0

→ − p + Δp � π � r² + p � π � r² + τ � 2 � π � r � Δx = 0

→ τ = Δp
Δx � r

2 : this equation does not contain any information about the fluid!

Fig. 3.11: Capillary viscosimeter

di rp p + Δp

x + Δxx

τ

τ
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3.2.1  Viscosity measurement methods

• Newtonian fluid: τ = η ∙ du
dr → du = 1

2η ∙ Δp
Δx ∙ r ∙ dr

• integration: u(r) = 1
2η ∙ Δp

Δx ∙ r²
2 + C

• boundary condition: u(r = R) = 0

→ C = − 1
2η ∙ Δp

Δx ∙ R²
2

• finally: u(r) = 1
4η ∙ Δp

Δx ∙ (r² − R²)

• flow rate: Q̇ = ∫
0

R
2π ∙ r ∙ u r ∙ dr
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3.2.1  Viscosity measurement methods

→ Q̇ = ∫
0

R
2π ∙ r ∙ 1

4η ∙ Δp
Δx ∙ (r² − R²) ∙ dr = π

2η ∙ Δp
Δx ∫

0

R
(r³ − rR²) ∙ dr

• hence: Q̇ = π
2η ∙ Δp

Δx
r4

4 − r2

2 ∙ R
2

0

R

• Hagen-Poiseuille (1840): Q̇ = − π
8η ∙ Δp

Δx ∙ R4

→ η = π
8Q̇ ̇̇

∙ Δp
Δx ∙ R4

- given parameter: R (geometry)

- to measure: Q̇, Δp
Δx



Biological and Medical Fluid Mechanics I |  Dr.-Ing. Michael Klaas
m.klaas@aia.rwth-aachen.de | http://www.aia.rwth-aachen.de 
SS 2018

3.2 Viscosity of blood

29 of 67

3.2.1  Viscosity measurement methods

• non-Newtonian fluid: τ = f (γ̇)

• maximum shear stress is reached at the wall r = R (wall shear stress):  τw = Δp
Δx ∙ R

2

• flow rate: Q̇ = ∫
0

R
2π ∙ r ∙ u r ∙ dr = 2π ∫

0

R
r ∙ u r ∙ dr = 2π u r r²

2 0

R
− ∫

0

R r²
2 du r

• boundary conditions: u(r = R) = 0 and u(r = 0) ≠ ∞

→ Q̇ = −2π ∫
0

R r²
2 du r = −π ∫

0

R
r² du(r)

dr dr

• substitutions:  1.)  - du(r)
dr = F(τ) 2.)  Δp

Δx = p′ 3.)  r = R τ
τw

→ dr = Rτw
dτ → dr = 2p′ dτ
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3.2.1  Viscosity measurement methods

• finally: Q̇ = −π � ∫
0

τw R² τ²
τw² (−F(τ)) 2

p′ dτ = 2πR²
τw²p′ � ∫

0

τw τ² F(τ) dτ

• substitution: 2
p′ = R

τw

→ Q̇ = πR³
τw³ ∙ ∫

0

τw τ² F(τ) dτ

• substitution: Φ = Q̇
πR³

→ Φ � τw³ = ∫
0

τw τ² F(τ) dτ

• derivative: dΦ
dτw

∙ τw³ + 3 ∙ Φ ∙ τw² = τw² ∙ F(τw)
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3.2.1  Viscosity measurement methods

with: F(τw) = - du(R)
dr = γ̇w

→ − γ̇w = F(τw) =  dΦ
dτw

∙ τw + 3 ∙ Φ Rabinowitsch-Mooney

- correlation between γ̇w and τw

− to measure: Q̇, Δp
Δx

− yields the curve: Φ = f(τw )

Fig. 3.12: Rabinowitsch-Mooney

Φ ∼
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3.2.1  Viscosity measurement methods

3. Cone-Plate-Rheometer
- technically complex

+ easy handling, also for non-Newtonian fluids

• Newtonian fluid: viscosity is determined by the (constant) gradient of the flow 

curve

• non-Newtonian fluid: viscosity must be reconstructed from the flow curve using 

pointwise measurements

- secondary flow phenomena for higher angular velocities

→ precise instrument is necessary

→ high costs
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3.2.1  Viscosity measurement methods

• in the gap:

- constant angular velocity: Ω=const.

- steady, parallel flow: γ̇ = vϕ
h = Ω � r∗

H

- with: H
r∗ = tan α → γ̇ =  Ω

tan α

- torque: M = ∫
0

R
τ � 2πr∗ � r∗dr∗ = 2

3 r ∗3
|� π � τ 0
R= 2

3 R ∗3
π � τ → τ = 3

2
M

πR³
- given parameter: R, α

- to measure: Ω → γ̇, M → τ

Fig. 3.13: Cone-plate rheometer
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3.2.1  Viscosity measurement methods

4. Couette-Rheometer
• similar principle as the cone-plate rheometer

• additionally to the cone-plate-system: very small cylindrical gap

• flow instabilities (Taylor vortices)

→ driven inner cylinder: instabilities 

appear at lower angular velocities compared 

to a driven outer cylinder

• double gap also possible

Fig. 3.14: Couette -Rheometer
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3.2.2  Viscosity models for blood plasma and whole blood

• blood plasma:

- ηpl = 1,92 – 2,2 cP

- the viscosity is independent from the shear velocity over a wide range:

- pronounced, characteristic decrease of the pipe friction coefficient in a turbulent 

pipe flow

→ viscous-elastic fluid with: τ ∽ γ̇ → τ ∽ ηpl ∙ γ̇

• viscosity models of whole blood:

1. Copley 3. Casson

2. Chmiel 4. Merville and Pelletier
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3.2.2  Viscosity models for blood plasma and whole blood

1. Viscosity model of Copley (1965)
• steeper increase of the viscosity at low 

shear rates (γ̇ < 10 sec-1)

• viscosity stays approx. constant above 

γ̇ = 20 sec-1, η = 8 cP

→ blood was assumed to have a flow limit: 

for τ ≤ τγ: γ̇‘ = 0; η = ∞

- aggregation affinity of the RBCs at γ̇‘ = 0

- minimal force necessary to dissociate the aggregate

- only after the dissociation the fluid will move

Fig. 3.15: Behavior of whole blood 
according to Copley

20

10

0 10 20 30 40 50 60 70 80

η
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3.2.2  Viscosity models for blood plasma and whole blood

2. Viscosity model of Chmiel (1973)
• measurements with low shear rheometer

- broader shear gap

- very slow rotation

• for the range [5 ∙10³ ≤ γ̇ ≤ 5 sec-1] the curve can be expresses through a polynomial 

of 7. degree: → γ̇ = c ∙ τ
a + τ

a
3

+ d ∙ τ
a

5

+ e ∙ τ
a

7

→ constants a, c, d, e for different Hct values

Fig. 3.16: Behavior of whole blood 
according to Chmiel (Hct = 44%)

τ

3

2

1

0,10 0,2 0,3 0,4 0,5
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3.2.2  Viscosity models for blood plasma and whole blood

• double logarithmic representation:

- η = f(γ̇) has an inflection point

- all curves η = f(γ̇) of fluids 

without a flow limit have 

an inflection point!

→ conclusion of Chmiel: 

blood has no flow limit

- main argument against Chmiel: by logarithmic representation an inflection point 

can be created even if a fluid possesses a flow limit so long measurements are 

not successful at 𝛾̇𝛾 → 0!

Fig. 3.17: Double logarithmic representation (Chmiel)
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3.2.2  Viscosity models for blood plasma and whole blood

3. Viscosity model of Casson
• assumption of flow limit γ̇ = 0 at τ ≤ τγ
• for high shear rates γ̇: Newtonian flow behavior

• empirical equation of the flow curve: 

τ = τγ + c ∙ du
dy

→ square: τ = τγ+ 2 ∙ τγ ∙ c ∙ du
dy + c2∙ du

dy Fig. 3.18: Double logarithmic 
representation (Casson)

ττ
flow limit
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3.2.2  Viscosity models for blood plasma and whole blood

→ τ − τγ= 2 ∙ τγ ∙ c ∙ γ̇ + c2∙ γ̇ with 2 ∙ τγ ∙ c = const.

→ for γ̇ < 1: 1. term dominates

→ for γ̇ > 1 (very big values): 2. term dominates

→ for c2 = η and for large values of γ̇: Newtonian behavior

→ corresponds to the asymptotic approximation of η to a constant 

value for large shear rates by Copley and Chmiel

1. term 2. term
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3.2.2  Viscosity models for blood plasma and whole blood

4. Viscosity model of Merville and Pelletier
• assumption of a flow limit τγ

• for du
dy < 31,5 sec-1: Casson model

• for du
dy > 105 sec-1: Newtonian behavior

• transition domain in between

Fig. 3.19: Model of Merville and Pelletier
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3.2.2  Viscosity models for blood plasma and whole blood

Different real blood data from literature:
→ asymptotic viscosity 

(approx. 3,1 

mPas at 10³ sec-1)

→ difference of 

temperature 

minor variations 

of the curve

Fig. 3.20: Different real blood data from literature
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3.2.2  Viscosity models for blood plasma and whole blood

Flow limit:
• a distinct clarification whether blood possesses a 

flow limit or not is not yet solved!

• consequences of a flow limit of the blood 

on the velocity profile:

→ in the vicinity of the center line τ < τγ can occur

→ then: γ̇ = 0 dominates Z around the middle line

→ measurements show such a behavior!

⇒ blood must have a flow limit whereas τγ is a function of the hematocrit value

Fig. 3.21: Oblated velocity profile 
with core domain with 
γ̇ = 0 
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3.2.2  Viscosity models for blood plasma and whole blood

• with decreasing hematocrit the flow limit τγ also decreases

• for very small Hct (less than 5%): τγ → 0 (no yield stress)

• for Hct = 45%:

τγ ≈ 0,015 dynes/cm² 

= 0,0015 Pa 

= 1,5 mPa

Fig. 3.22: Variation of the yield stress τγ with hematocrit 
(3 different blood samples)
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3.2.3  Influences on the viscosity of blood

1. Surface coating
• glass surface

• fibrin coated surface → low viscosity

2. Hematocrit
• Hct ↑ : viscosity ↑ (according to Chmiel)

→ corresponds to Einstein's equation for suspensions with stiff particles

3. Temperature
• temperature ↑ : viscosity ↓

• according to ratios in the water
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3.2.3  Influences on the viscosity of blood

→ Chmiel: 2 ∙ ηT
ηT0

= exp g(T0−T)
(T+h) ∙ (T0+h)

Fig. 3.23: Influence of the temperature on  the viscosity of blood 
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3.2.3  Influences on the viscosity of blood

4. Vessel diameter 

• important vessel diameters:

- Arterioles: dA = 0.02 - 0.04 mm

- Capillaries: dC = 0.008 mm ≈ dErythrocytes → other conditions apply!

• dVessel ≥ 0.5 mm: blood can be handled as a continuum independently of Re

• 0.03 mm ≤ dVessel ≤ 0.5 mm: decomposition in wall vicinity

- in the direct vicinity of the wall: fewer blood cells than in the central flow
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3.2.3  Influences on the viscosity of blood

→ ηwall < ηcentral due to:

→ packing density

→ transversal forces applied 

on the blood cells in the 

shear field („wall migration“)

- for thin capillaries the cell poor layers become relatively large

• dVessel ≤ 0.03 mm: blood cannot be handles as a liquid any more!

• dVessel ≤ 0.02 mm: additional effect due to the impeded inflow of erythrocytes

vessel wall

RBC

Fig. 3.24: Packing density



Biological and Medical Fluid Mechanics I |  Dr.-Ing. Michael Klaas
m.klaas@aia.rwth-aachen.de | http://www.aia.rwth-aachen.de 
SS 2018

3.2 Viscosity of blood

51 of 67

3.2.3  Influences on the viscosity of blood

• Fahraeus-Lindqvist-Effect (1931)

- capillary diameter d ↓ (d < 1.5 mm) : viscosity ηeff ↓ (effective viscosity of the 

blood)

- a formal explanation of the Fahraeus-Lindqvist-Effect is not given yet

Fig. 3.25: Influence of capillary diameter on the viscosity of blood 
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3.2.3  Influences on the viscosity of blood

- physiological meaning:

→ resistance in very small vessels of the body doesn‘t increase in the 

proportions suggested by the decrease of the radius!

→ according to Hagen- Poiseuille: Δp = Q̇ ∙ 8 ∙ η ∙ l
π∙R4

→ R4 should have a strong influence

→ the strong influence of the radius is partly compensated by the decrease of 

the viscosity
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3.2.3  Influences on the viscosity of blood

• Inflow from a large vessel in a small vessel

- wall vicinity: cell poor 

domain is stopped 

and expands

- central cell rich 

domain is accelerated

→ RBCs flow in the capillaries with a constant velocity and equal distribution

→ after ending the intake process: RBCs are found on the flow rails which have a 

higher velocity than the decelerated layers in wall vicinity

vessel wall cell rich domain

cell poor domain

Fig. 3.26: Inflow from large to small vessel
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3.2.3  Influences on the viscosity of blood

5. Patho-physiological influences

• plasma:

- plasma proteins have an influence on

→ the RBC-aggregation (flow limit)

→ blood sedimentation rate = 

indication for infections

1. Fibrinogen: long molecules, 

aggregation affinity ↑

2.  Globulin: aggregation affinity ↑

3.  Albumin: neg. charged, aggregation 

affinity ↓

Fibrinogen

RBC - Surface
Fig. 3.27: Impact of Fibrinogen
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3.2.3  Influences on the viscosity of blood

• corpuscular components:

- influence of hematocrit

- influence of cell shape:

→ e.g. Elliptocytosis 

(hereditary, 0.02-0.05% of the population)

→ RBCs become ellipsoid-shaped 

(bigger cell content at same surface)

→ flexibility ↓

→ Newtonian flow behavior 

at high viscosity

Fig. 3.28: Hereditary Elliptocytosis [2] 
(some samples marked)
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3.2.3  Influences on the viscosity of blood

→ e.g. Sickle-Cell-Anemia (hereditary, spread under Negroid population)

→ Hemoglobin crystallizes at low pO2

→ weird cell forms, not flexible

→ viscosity ↑ (Dintenfass at Hct = 30%: ηoxy= 0,06 → η desoxy = 0,1)

Fig. 3.29: Microscopic image (left, [3]) and impact of Sickle-Cell-Anemia (middle and right, [4])
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3.2.3  Influences on the viscosity of blood

• other influences:

- heavy burns

- severe bleedings

- excessive absorption of blood fats

→ membrane of the RBCs will be crenated

(„Echinocytes“)

→ flexibility ↓

→ liquid inclusion

→ effective radius ↑

→ viscosity ↑

Fig. 3.30: Echinocytes [5], [6] 
(samples marked)
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3.3.1  Requirements and composition

• refractive index matched for optical access (PIV – Particle image Velocity)

• comparable non-Newtonian behavior as blood

• same asymptotic viscosity at high shear rates

• non-toxic

Substance Specification Effect

Distilled water free of ions filler, viscosity

Glycerol sugar alcohol viscosity, refractive index, density

Xanthan gum polysaccharide, stabilizer/ thickener non-Newtonian viscosity

Sodium Iodid salt refractive index matching, density

Sodium Thiosulfate salt prevents discoloration of Sodium Iodide
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3.3.2  Xanthan gum

• shear-thinning behavior

• higher shear 

→ breaking entanglements

• at low shear rates:

distanglement is slower 

than entanglement

→ Newtonian behavior

• no destruction at high 

shear rates

→ Newtonian behavior
Fig. 3.31: Viscosity of Xanthan gum [6]
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3.3.2  Xanthan gum

• molecular structure:

- conformational isomerism:

→ temperature ↑ , Ion ↓ : random coil

→ temperature ↓ , Ion ↑ : ordered helical structure

- model concept (salt free):

→ rigid rods (anionic side chain → rigid helical structure)

→ repulsive interaction

→ no parallelization possible

→ at high concentration: frozen points

→ high viscosity

coolheat

Fig. 3.32: Orientation 
of the 
Xanthan 
molecule
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3.3.2  Xanthan gum

- 𝛾̇𝛾 >>  𝛾̇𝛾0: Eshear > Erepulsion → „parallelization“

Fig. 3.33: Behavior of the Xanthan molecule at different concentrations and shear rates

low concentration high concentration

deformation at lower 
shear rate

deformation at higher 
shear rate
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3.3.3  Influence of temperature

Fig. 3.34: Temperature influence on the flow curve
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3.3.3  Influence of temperature

Fig. 3.35: Temperature influence on the shear viscosity
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3.3.3  Influence of temperature

- viscosity decreases

comparable to blood

or water

- ΔT = 10K 

→ Δη∞ ≈ -20%

Fig. 3.36: Viscosity error to 22°C depending on temperature
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Thank you for your attention!
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