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Problem 1 (9 Points)

A cube of the density ρK and the edge length a is submerged using a negligibly thin rope into a
basin filled with a liquid of the density ρW . It is ρK > ρW . The cube does not touch the wall of
the pool (see left figure below).
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a) Draw the pressure distribution in the projected plane along the horizontal and vertical
surfaces of the body. To do so, transfer the left figure below to your solution sheet.

b) Determine the buoyancy force as a function of the cube volume by integrating the pressure
forces on the 6 surfaces of the cube.

Next, the cube is submerged into the fluid on the left wall of the pool. The contact surface
between the cube and the wall is ideal and free of fluid. The friction coefficient between the
wall and the cube is µ.

c) Again, draw the pressure distribution in the projected plane along the surface of the cube
carefully. Transfer the above right figure from the task to your solution sheet.

d) Determine the depth h at which the cube reaches its equilibrium state. Assume a steady
state problem and neglect the inertia of the cube.

Given:

ρW , ρK , ρK > ρW , a, g, pa, µ

Hints:

• The friction force can be determined with FR = µFN , where FN is the contact force. Note
that, no distinction is made between sliding and static friction.

• Check your results for unit and sign plausibility!



Problem 1

a) Pressure distribution:

a

b) Surface integral
~F = −

∫
A
p d ~A

~F = −


∫
left

p d ~A+

∫
right

p d ~A︸ ︷︷ ︸
=0

+

∫
front

p d ~A+

∫
back

p d ~A︸ ︷︷ ︸
=0

+
∫
top
p d ~A+

∫
bottom

p d ~A


FA = −

[∫
a2
ptop d ~A+

∫
a2
pbottom d ~A

]
The hydrostatic equation provides:

ptop = pa + ρWghtop and pbottom = pa + ρWg(htop + a)

Substituting:

FA = −a2[(pa + ρWghtop)− (pa + ρWg(htop + a))] = ρWga
3 (= ρWgVK)

c) Pressure distribution:

a

z′

d) Surface Integral:

~F =

∫
left

p d ~A+

∫
right

p d ~A︸ ︷︷ ︸
6=0

+

∫
front

p d ~A+

∫
back

p d ~A︸ ︷︷ ︸
=0

+
∫
top
p d ~A+

∫
bottom

p d ~A

The upward buoyant force is determined similarly to b) as



FA = ρWga
3.

Contact with the wall results in a pressure force directed towards the wall:

FN =
∫
A
pright(z

′) dA

The hydrostatic equation yields:

pright(z
′) = ptop + ρWgz

′ = pa + ρWgh+ ρWgz
′

Substituting:

FN = a
∫
a
(pa + ρWgh+ ρWgz

′)dz′ = a2(pa + ρWgh+ 1
2
ρWga).

The force balance around the cube leads to:

0 = FA + FR − FG
Where the frictional force acts against the direction of motion.

Substituting:

0 = ρWga
3 + µFN − ρKga3 = ρWga

3 + µa2(pa + ρWgh+ 1
2
ρWga)− ρKga3

Rearranging:

h =
ρKga

3−ρW ga3

µa2
−pa− 1

2
ρW ga

ρW g
= a

µ
( ρK
ρW
− 1)− pa

ρW g
− 1

2
a



Problem 2 (11 Points)

A Frisbee with massm enters the stream of a fountain. The water jet impinges upon the disc and
is divided into two equal-sized partial streams. The problem can be assumed two-dimensional.
Initially, the Frisbee does not move.

AD

vD

ρ
α

g

m

x

y

a) Determine the mass m of the Frisbee.

To remove the Frisbee from the water jet, the velocity of the jet is reduced to v∗D. Therefore, the
Frisbee descends at a speed of 1

4
v∗D.

b) Determine the new velocity of the water jet v∗D.

We consider the momentum equation in the moving coordinate system.

c) Show through a short calculation that

d~I

dt
=

∫
KF

ρ~vabs(~vrel · ~n)dA =

∫
KF

ρ~vrel(~vrel · ~n)dA

holds.

Given:

ρ, g, α, vD, AD

Hints:

• The flow is frictionless.

• The gravitational force of the fluid can be neglected.

• Check your results for unit and sign plausibility!



Problem 2

a) Momentum equation in the fixed coordinate system

AD

vD

ρ
α AE

g

m

x

y

In the y-direction:
dI
dt

= −ρADv2
D − 2ρv2

EAE sinα = −mg
Using Bernoulli and pD = pE = pa, we get:

vE = vD

Also, from symmetry and continuity:

AE = 1
2
AD

Rearranging:

m = ρ
g
v2
DAD(1 + sinα)

b) Momentum equation in the moving coordinate system

In the y-direction:
dI
dt

= −ρADv∗2D,rel − 2ρv∗2E,relAE sinα = −mg
Still, AE = 1

2
AD.

Using Bernoulli in the moving system and pD = pE = pa:

v∗E,rel = v∗D,rel

Rearranging and substituting from part (a):

ρv∗2D,relAD(1 + sinα) = ρv2
DAD(1 + sinα)

With v∗D,rel = v∗D + 1
4
v∗D = 5

4
v∗D:

⇒ v∗D = 4
5
vD

c) It holds:
d~I
dt

=
∫
KF

ρ~vabs(~vrel · ~n)dA

where ~vabs = ~vF + ~vrel, yielding:∫
KF

ρ~vF (~vrel · ~n)dA+
∫
KF

ρ~vrel(~vrel · ~n)dA

Since ~vF is constant, the first term becomes:

~vF
∫
KF

ρ(~vrel · ~n)dA = 0

due to mass conservation of the system. What remains is:∫
KF

ρ~vabs(~vrel · ~n)dA =
∫
KF

ρ~vrel(~vrel · ~n)dA



Problem 3 (11 Points)
A conveyor belt with a circumferential velocity of uw conveys oil through a laminar flow in
a gap. The oil has the viscosity η and the density ρ. Outside the oil, the ambient pressure is
uniform.
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a) Establish the force equilibrium in the direction of flow for a fluid element and simplify it
to formulate the differential equation for the shear stress.

b) Determine the velocity profile u(y) and the shear stress profile τ(y) as a function of the
pressure gradient ∂p

∂x
.

c) What maximum height difference H can be achieved?

Given:

uw, ρ, η, h, l, g

Hints:

• Assume that the flow in the gap (height h) is fully developed along the length of the belt
l.

• Check your results for unit and sign plausibility!



Problem 3

a) Force balance on the volume element in the x-direction:

g

H

l

u

h

w

y

x
p p+dp

τ

τ+dτ"1" "2"

(
p−

(
p+

∂p

∂x
dx

))
dy +

(
τ −

(
τ +

dτ

dy
dy

))
dx = 0

⇒ dτ

dy
= −∂p

∂x

b) double integration:

→ τ(y) = −∂p
∂x
y + c1

With τ = −η ∂u
∂y

→ u(y) =
∂p
∂x

2η
y2 − c1

η
y + c2

Boundary conditions:

y = 0 : u = 0
y = h : u = uw

}
→ c1 =

∂p
∂x

2
h− uwη

h
and c2 = 0

⇒ τ(y) =
∂p
∂x

2
(h

2
− y)− uwη

h

⇒ u(y) =
∂p
∂x

2η
(y2 − yh) + y uw

h

c) Maximum height→ V̇ = 0

Bernoulli/Hydrostatics :

p2 = p1 + ρgH ,
∂p

∂x
=
ρgH

l

→ u(y) =
ρgH

2ηl

(
y2 − yh

)
+ y

uw
h

→ V̇ = 0 =

h∫
0

[
ρgH

2ηl

(
y2 − yh

)
+ y

uw
h

]
dy



→ 0 =
ρgH

2ηl

(
−h

3

6

)
+
huw

2

→ H =
6ηluw
ρgh2



Problem 4 (8 Points)

The upstream airflow (density ρ, dynamic viscosity η) of a wind turbine with rotor diameter D
is defined at constant freestream velocity. The rotational speed of the turbine is n. The incoming
flow is considered incompressible.

n

D
ρ, η, u∞

a) How many dimensionless numbers describe the flow field?

b) Determine the dimensionless numbers of this flow field using dimensional analysis (the
Π-theorem).

c) Express the dimensionless numbers determined in b) using standard similarity parameters
in fluid mechanics.

A model of the system with a rotor diameter of D′ is investigated in a wind tunnel. Findings for
the real system are to be determined by measuring the rotational speed n′ and torque M ′ on the
model. The fluid in the wind tunnel is also air (ρ, η).

d) Determine the rotational speed n and torque M of the real system under the assumption
that the inflow conditions in the wind tunnel have been chosen such that the data can be
extrapolated to the real case.

Given:

ρ, η, u∞, D,D
′, n′,M ′



Problem 4

a)

Parameters: k : u∞, ρ, η,D, n

Dimensions: r : M,L, T (3 repeating variables)

⇒ k = 5, r = 3→ k − r = 2 dimensionless numbers 1
1

b) Choice of repeating variables, e.g., n,D, ρ

Π1 =u∞n
α1Dβ1ργ1

M : 0 + 0α1 + 0β1 + 1γ1 = 0→ γ1 = 0

L : 1 + 0α1 + 1β1 − 3γ1 = 0→ β1 = 3γ1 − 1 = −1

T : −1− 1α1 + 0β1 + 0γ1 = 0→ α = −1

⇒ Π1 =
u∞
nD

1
2

Π2 =η nα2Dβ2ργ2

M : 1 + 0α2 + 0β2 + 1γ2 = 0→ γ2 = −1

L : −1 + 0α2 + 1β2 − 3γ2 = 0→ β2 = 3γ2 + 1 = −2

T : −1− 1α2 + 0β2 + 0γ2 = 0→ α = −1

⇒ Π2 =
η

nD2ρ
1

3

c) With the circumferential velocity of the blade tips uΘ = πDn, the transformation of the
second dimensionless number is evident.

Π1 =
u∞
nD

=
1

Sr
1

4

Π2 =
η

nD2ρ
=

η

ρD(nD)
=

1

Re
1

5
d)

Re = Re′ :
ρD2n

η
=
ρD′2n′

η
→ D2n = D′2n′ → n = n′

(
D′

D

)2

1
6

Sr = Sr′ :
nD

u∞
=
n′D′

u′∞
→ u′∞ = u∞

n′

n

D′

D
= u∞

D

D′
1

7

CM = C ′M :
M

ρu2
∞D

3π
=

M ′

ρu′2∞D
′3π
→M = M ′

(
u∞
u′∞

)2(
D

D′

)3

= M ′ D

D′
1

8



Problem 5 (12 Points)

On the upper surface of a flat plate with a width B a constant external velocity ua generates a
laminar, incompressible boundary layer. Using a suction device, which sucks a constant volume
flow rate V̇ distributed evenly over a length L, the drag force is reduced, resulting in a constant
boundary layer thickness δ.

x

y

L

V̇

δ u(y)

The following approach is used to approximate the velocity profile in the laminar boundary
layer:

u(x, y)

ua
= a0 + a1

(y
δ

)
+ a2

(y
δ

)2

− a1

(y
δ

)3

.

a) Determine the coefficients a0, a1, a2, and thus the velocity profile u(y/δ) in the boundary
layer.

b) Determine the tangential force FT acting on the upper surface of the plate.

c) Calculate the tangential force that occurs when the suction system is turned off. Assume
a linear velocity profile in the boundary layer.

d) From a technical point of view, what is the maximum reasonable volume flow rate V̇ ?
State the relevant condition. An explicit solution for V̇ is not necessary.

Given:

η, ρ, ua = const., V̇ , B, L

Hint:

• Boundary layer equations (2D, incompressible)

∂u

∂x
+
∂v

∂y
= 0

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+ η

∂2u

∂y2

∂p

∂y
= 0

• von Kármán integral relationship (extended with suction velocity va)

dδ2

dx
+

1

ua

dua
dx

(2δ2 + δ1)− τW
ρu2

a

=
va
ua



Problem 5

a) Three boundary conditions to determine the unknowns ai.

No-slip condition:
y

δ
= 0 : u = 0→ a0 = 0

Boundary layer edge:
y

δ
= 1 : u = ua → a2 = 1 1

1

Wall boundary from x-momentum:
y

δ
= 0 : v

∂u

∂y

∣∣∣∣
y=0

=
η

ρ

∂2u

∂y2

∣∣∣∣
y=0

1
2

Substituting the known coefficients into the velocity distribution and using the definition

of the volume flow rate v|y=0 = − V̇

BL
1

3

u

ua
= a1

y

δ
+
(y
δ

)2

− a1

(y
δ

)3

→ ∂

∂y

(
u

ua

)
= a1

(
1

δ
− 3y2

δ3

)
+

2y

δ2

→ ∂2

∂y2

(
u

ua

)
= a1

(
−6y

δ3

)
+

2

δ2

Plugging into wall boundary condition: − V̇

BL

a1ua
δ

=
η

ρ

2ua
δ2
→ a1 = −2BLη

ρδV̇
1

4

b) For the given problem, the von Kármán integral relationship simplifies to

dua
dx

= 0 ,
dδ2

dx
= 0 , va = − V̇

BL
⇒ τW

ρua
=

V̇

BL
1

5

The tangential force is given by

FT =

∫
L

τWBdx =

∫
L

ρV̇ ua
BL

Bdx = ρV̇ ua 1
6

c) For the switched-off system (here subscript off ), no constant boundary layer thickness is
established. 1

7

The velocity profile is given by
uoff
ua

=
y

δoff (x)
. It follows:

dua
dx

= 0 , va = 0 ,
δ2

δ
=

∫ 1

0

u

ua

(
1− u

ua

)
d
(y
δ

)
=

∫ 1

0

y

δ
−
(y
δ

)2

d
(y
δ

)
=

1

6
1

8

⇒ 1

6

dδ

dx
=
τW
ρu2

a

=
1

ρua
η
∂u

∂y

∣∣∣∣
y=0

=
η

ρδ
→ δdδ =

6η

ρ
dx → 1

2
δ2 =

6η

ρ
x

→ δoff =

√
12η

ρ

√
x ⇒ τW,off =

ηua
δoff

=

√
ηρua√
12

1√
x

1
9

⇒ FT,off =

∫
L

τW,offBdx =

√
ηρua√

3

√
x

∣∣∣∣L
0

=

√
ηρua√

3

√
L 1

10



d) The application is meaningful if the power savings ∆PW are at least equal to the applied
power Pa, i.e., ∆PW ≥ Pa. 1

11

∆PW = (FT,off − FT )ua

Pa = V̇∆ptot = V̇
ρ

2
(u2

a − v2
a) = V̇

ρ

2

u2
a −

(
V̇

BL

)2
 1

12



Problem 6 (9 Points)

a) Describe the terms streamlines, pathlines, and streaklines.

b) Name three non-Newtonian fluid types and sketch the shear stress as a function of shear
rate for each.

Considerations are now made regarding boundary layer flows over flat plates with different
relative roughnesses k/L.

c) Sketch in a diagram the skin friction coefficient cf against the Reynolds number ReL for
i) laminar flow, ii) turbulent flow over a smooth plate, and iii) fully turbulent flow over a
rough plate.

d) Name one advantage and one disadvantage of turbulent flow compared to laminar flow in
technical applications.



Problem 6

a) • Streamline: The lines that are tangential to the velocity vector field are called stre-
amlines.

• Pathline: The pathline is the trajectory of a specific fluid particle over a time interval.
• Streakline: The streakline defines the instantaneous location of fluid particles that

have passed by the same fixed spatial point at a previous time.

b) Shearthickening, shear thinning, Bingham plastic

c)

d) Advantage: Higher mixing is important for heat exchangers or mixing different fluids, in-
creased detachment tolerance due to stronger momentum exchange in the boundary layer.
Disadvantage: Increased friction force 1

1


