
Computational Fluid Dynamics I

Exercise 1

1. Formulate the conservation of mass for a two-dimensional infinitesimal volume as
shown in the sketch.

- x, u

6y, v

dτ

� -
dx

?

6

dy

(a) Formulate the conservation equation in integral form and derive its differential
form.

(b) Formulate the differential equation in a non-conservative form.

2. Reformulate the conservative form of the 2-D Euler equations in Cartesian coordinates

into a form with the variables ~V = (%,~v, E)> and the substantial derivative D~V
Dt

.

3. Derive the potential equation for compressible flow from the Euler equations under the
assumption of steady, isoenergetic, and irrotational flow (~ζ = 0 ⇒ ds = 0 (Crocco’s

theorem) ⇒ ∇p = ∂p
∂%

∣∣∣
s
∇%⇒ ∇p = a2∇%).



Computational Fluid Dynamics I

Exercise 1 (solution)

1. (a) conservation of mass:∫
τ

∂U1

∂t
dτ +

∮
A

~H1 · ~ndA = 0 ,
U1 = %
~H1 = %~v = %

(
u
v

)

- x, u

6y, v

∆τ

©2

©3

©4

©1

� -
∆x

?

6

∆y

©1 ~H1 · ~ndA =
(
%u
%v

)
·
(−dy

0

)
= −%u dy

©2 ~H2 · ~ndA =
(
%u
%v

)
·
(

0
−dx

)
= −%v dx

©3 ~H3 · ~ndA =
((%u+

∂(%u)
∂x

∆x)dy

(%v+
∂(%v)
∂x

∆x)dy

)
·
(
dy
0

)
= (%u+ ∂(%u)

∂x
∆x)dy

©4 ~H4 · ~ndA =
((%u+

∂(%u)
∂y

∆y)dx

(%v+
∂(%v)
∂y

∆y)dx

)
·
(

0
dx

)
= (%v + ∂(%v)

∂y
∆y)dx

⇒
∫

∆τ

∂%

∂t
dτ +

∫
∆x

−%v dx+

∫
∆y

(%u+
∂(%u)

∂x
∆x)dy

+

∫
∆x

(%v +
∂(%v)

∂y
∆y)dx+

∫
∆y

−%u dy = 0

lim
∆τ,∆x,∆y→dτ,dx,dy

⇒ ∂%

∂t
dτ − %v dx+ (%u+

∂(%u)

∂x
∆x)dy + (%v +

∂(%v)

∂y
∆y)dx− %u dy = 0

⇔ ∂%

∂t
+
∂(%u)

∂x
+
∂(%v)

∂y
=

∂%

∂t
+∇ ·

(
%u

%v

)
︸ ︷︷ ︸
%~v

= 0



Alternative solution: use Gauss theorem∮
A

%~v · ~ndA =

∫
τ

div(%~v)dτ

⇒
∫
τ

∂%

∂t
dτ +

∫
τ

div(%~v)dτ = 0

lim
∆τ→dτ

⇒ ∂%

∂t
+∇ · %~v = 0

(b) conservative form:
∂%

∂t
+∇ · (%~v) = 0

⇒ ∂%

∂t
+ ~v · ∇%︸ ︷︷ ︸

Substantial/material derivative D%
Dt

+%∇ · ~v = 0 ⇒

non-conservative form:
D%

Dt
+ %∇ · ~v = 0



2. %t + (%u)x + (%v)y = 0 (mass)

(%u)t + (%u2 + p)x + (%uv)y = 0 (x−momentum)

(%v)t + (%uv)x + (%v2 + p)y = 0 (y −momentum)

(%E)t + (%uE + up)x + (%vE + vp)y = 0 (energy)

conservation of mass:
%t + u%x + v%y + %(ux + vy) = 0⇔ D%

Dt
+ %∇ · ~v = 0

x-momentum eq.. : %ut + %uux + %vuy + u%t + u(%u)x + u(%v)y + px = 0

%ut + %uux + %vuy + u
(
%t + (%u)x + (%v)y

)
︸ ︷︷ ︸

= 0 (mass-conservation eq.)

+px = 0

%
Du

Dt
+ px = 0

⇔ Du

Dt
+

1

%
px = 0

energy equation: %Et + %uEx + %vEy+

E%t + E(%u)x + E(%v)y︸ ︷︷ ︸
= 0 (mass-conservation eq.)

+(up)x + (vp)y = 0

⇔ DE

Dt
+

1

%

(
(up)x + (vp)y

)
= 0

3. Derivative of pressure can be transformed to derivative of density:

∇p =

(
px
py

)
=

(∂%
∂%

∂p
∂x

∂%
∂%

∂p
∂y

)
=

(∂p
∂%

∂%
∂x

∂p
∂%

∂%
∂y

)
=
∂p

∂%
∇% = a2∇% a is speed of sound

Introduce potential Φ:
~v = ∇Φ u = Φx , v = Φy dp = a2d%

Euler equations (2–D, steady for Cartesian coordinates) :

(%u)x + (%v)y = 0

(%u2 + p)x + (%uv)y = 0

(%uv)x + (%v2 + p)y = 0

%uux + u(%u)x + u(%v)y︸ ︷︷ ︸
= 0

+%vuy + px = 0 | · u

%uvx + v(%u)x + v(%v)y︸ ︷︷ ︸
= 0

+%vvy + py = 0 | · v



Replace u and v by potential Φ:

%u2Φxx + %uvΦxy + upx = 0

%uvΦxy + %v2Φyy + vpy = 0

∣∣∣∣∣+
u2Φxx + 2uvΦxy + v2Φyy +

1

%
( upx + vpy︸ ︷︷ ︸
(u
v)·∇p =(u

v)·a2∇%

) = 0

⇒ u2Φxx + 2uvΦxy + v2Φyy + ua2 1

%
%x + va2 1

%
%y = 0

with the conservation of mass u%x + v%y = −%ux − %vy = −%Φxx − %Φyy

potential equation: (u2 − a2)Φxx + 2uvΦxy + (v2 − a2)Φyy = 0



Computational Fluid Dynamics I

Exercise 2

1. (a) Derive the vorticity transport equation and the Poisson equation for the stream
function Ψ for a two dimensional incompressible and viscous flow.

(b) Formulate the boundary conditions for the stream function and the vorticity
component at the boundaries of the channel flow domain shown in the sketch.

∂
∂
∂

∂

y, v

x, u

u (y) u (y)

Ev
E

=0
x

v
A

=0A

x

Wall

Wall

2. Formulate for incompressible flows (without taking into account the energy equation)

(a) the Euler equations

- with the velocity vector ~v and the pressure p

- with stream function Ψ and vorticity component ω

(b) the potential equation

- with the velocity components u, v (Cauchy–Riemann differential equation)

- with Φ

- with Ψ

Determine for a two-dimensional and steady flow the characteristic lines and the type
of the equations.



Computational Fluid Dynamics I

Exercise 2 (solution)

1. (a) Navier-Stokes equations 2D, incompressible flow (ρ = const⇒ ρt = 0):

ux + vy = 0

ut + uux + vuy +
1

ρ
px = ν∇2u

vt + uvx + vvy +
1

ρ
py = ν∇2v

The vorticity transport equation is obtained by taking the curl (∇ × ~f) of the
momentum equations: ∂

∂x
(y-momentum equation) - ∂

∂y
(x-momentum equation)

vxt + uxvx + uvxx + vxvy + vvxy + 1
ρ
pxy

−uyt − uyux − uuxy − vyuy − vuyy − 1
ρ
pxy

= ν
∇2(vx
−uy)

where the pressure terms fall out:

(vx−uy)t+ux(vx − uy) + vy(vx − uy)︸ ︷︷ ︸
= 0 (mass-conserv. eq.)

+v(vx−uy)y +u(vx−uy)x = ν∇2(vx−uy)

With the vorticity component ω = vx − uy:

ωt + uωx + vωy︸ ︷︷ ︸
convection of vorticity

= ν∇2ω︸ ︷︷ ︸
diffusion of vorticity

⇒ Dω

Dt
= ν∇2ω

which is the vorticity- (or eddy-) transport equation. The Poisson equation for
the stream function Ψ is obtained with u = Ψy, v = −Ψx:

−ω = −vx + uy = Ψxx + Ψyy = ∇2Ψ

Finally, we have two coupled partial differential equations for the two variables ω
and Ψ, the velocities u and v in the vorticity-transport equation can be replaced
by u = Ψy and v = −Ψx.



(b) We have boundary conditions given for u and v, but we need them for ω and Ψ:

• In- and outflow boundary:
The velocity profile u(y) is given and we know that Ψy = dΨ

dy
= u, therefore

integration of dΨ = u(y)dy yields:

ΨE(y) =

∫ y

ywall

uE(y′)dy′ + Ψ(ywall)

where the value at the wall Ψ(ywall) can be chosen arbitrary as our PDE
contains only derivatives of Ψ. For the vorticity boundary condition we
compute the derivatives of u and v:

ωE = vx − uy = −∂uE(y)

∂y

• Solid wall:
The no slip condition u = v = 0 holds, therefore v = Ψx = 0 ⇒ Ψwall =
const.
From the Poisson function for the stream function Ψxx + Ψyy = −ω with
Ψxx = 0:
⇒ −ωwall = uy = Ψyy and uwall = 0 = Ψy,wall

Therefore we use a Taylor series expansion for ywall:

Ψ(ywall + ∆y) = Ψ(ywall) + Ψy(ywall)︸ ︷︷ ︸
= 0

∆y + Ψyy(ywall)
∆y2

2
+ . . .

⇒ Ψyy(ywall) = 2
Ψ(ywall + ∆y)−Ψ(ywall)

∆y2

⇒ ω(ywall) = −Ψyy(ywall) = −2
Ψ(ywall + ∆y)−Ψ(ywall)

∆y2



2. (a) Euler equations for incompressible flow (~v, p):

∇ · ~v = 0
D~v

Dt
+

1

ρ
∇p = 0

characteristic lines (steady 2D flow):

ux + vy = 0

uux + vuy + 1/ρpx = 0⇔
uvx + vvy + 1/ρpy = 0

 ∂x ∂y 0
u∂x + v∂y 0 1

ρ
∂x

0 u∂x + v∂y
1
ρ
∂y

 u
v
p

 = 0

Use chain rule of PDE (ux = uΩΩx + uSSx) to transform PDE to

 Ωx Ωy 0
uΩx + vΩy 0 1

ρ
Ωx

0 uΩx + vΩy
1
ρ
Ωy

 uΩ

vΩ

pΩ


︸ ︷︷ ︸

crosswise derivative

+

 Sx Sy 0
uSx + vSy 0 1

ρ
Sx

0 uSx + vSy
1
ρ
Sy

 uS
vS
pS

 = 0

We need the determinant of the coefficients matrix of the crosswise derivatives
to be zero:∣∣∣∣∣∣

Ωx Ωy 0
uΩx + vΩy 0 1

ρ
Ωx

0 uΩx + vΩy
1
ρ
Ωy

∣∣∣∣∣∣ = 0 = −(uΩx + vΩy)
1

ρ
Ω2
x − (uΩx + vΩy)

1

ρ
Ω2
y

⇔ (u
Ωx

Ωy

+ v)(
Ω2
x

Ω2
y

+ 1) = 0⇒ dy

dx
= −Ωx

Ωy

=
v

u
or

Ωx

Ωy

= ±
√
−1

i. e. 1 real, 2 imaginary characteristic lines ⇒ mixed hyperbolic elliptic type

Euler equations (2D) Ψ, ω:
∇2Ψ = −ω
Dω

Dt
= 0

characteristic lines (steady flow):

Ψxx + Ψyy = −ω
uωx + vωy = 0

⇔
(
∂xx + ∂yy 1

0 u∂x + v∂y

)(
Ψ
ω

)
= 0

to solve: ∣∣∣∣ Ω2
x + Ω2

y 0
0 uΩx + vΩy

∣∣∣∣ = 0 = (uΩx + vΩy)(Ω
2
x + Ω2

y)

⇒ see Euler equations (~v, p)



(b) Euler equations (incompressible, 2D, irrotational: ω = 0):
(Ψy = u,Ψx = −v,Φx = u,Φy = v)

∇2Φ = Φxx + Φyy = 0 Potential formulation ~v = ∇Φ

∇2Ψ = Ψxx + Ψyy = 0 Stream function formulation

for which the characteristic slopes are computed by

Q = Ω2
x + Ω2

y = 0⇒ dy

dx
=
−Ωx

Ωy

= ±
√
−1

which results in two imaginary lines ⇒ the PDE is of elliptic type.

Either of the above second-order PDEs can be transformed to a system of two
first-order PDEs:

ux + vy = 0

vx − uy = 0

which in this case are known as the Cauchy-Riemann differential equation, to
compute the characteristic lines solve:∣∣∣∣ Ωx Ωy

−Ωy Ωx

∣∣∣∣ = 0⇒ Ω2
x + Ω2

y = 0⇔ dy

dx
= −Ωx

Ωy

= ±
√
−1

i. e. 2 imaginary characteristic lines ⇒ elliptic type (same results as above)



Computational Fluid Dynamics I

Exercise 3

1. Consider the non-linear, hyperbolic partial differential equation

ut + uux = 0

(a) Determine the characteristic line and the characteristic solution.

(b) The following initial condition is given:

u(x, t = 0) =


0 for x ≤ 0
x for 0 < x ≤ 1
1 for x > 1

Determine the solution for the time levels t=1
2

and t=1 in the (x,t)-diagram

1 2

1 2

1

1

/2

x

x

u(x,0)

1

u

t



Computational Fluid Dynamics I

Exercise 3 (solution)

1. (a) PDE: ut + uux = 0:
Use coordinate transformation

ux = uΩΩx + uSSx

ut = uΩΩt + uSSt

and fill into PDE:

uΩΩt + uSSt + u(uΩΩxuSSx) = 0

⇒ (Ωt + uΩx)︸ ︷︷ ︸
= Q

uΩ + (St + uSx)uS = 0

Set Q = 0 for the cross-wise derivative uΩ to be undetermined and determine
the slope of the characteristic line:

Q = Ωt + uΩx = 0⇔ −Ωt

Ωx

=
dx

dt
= u

When assuming u = const. for the slope of the characteristic line, integration
from x0, t0 yields the characteristic line C:

C : x− x0 = u (t− t0) or t = t0 +
x− x0

u

The characteristic solution is obtained by transforming the PDE from (x, y) to
(τ, ξ): dτ = dt, dξ = dx− udt:

ut = ξtuξ + τtuτ = −uuξ + uτ

ux = ξxuξ + τxuτ = uξ

apply to PDE ⇒
−uuξ + uτ + uuξ = uτ = 0

That is, the value of u will be constant in time on each individual character-
istic curve due to the absence of any source/sink terms in the original PDE.
Integration over τ with ξ = x− ut = const. ⇒

u(τ, ξ) = c(ξ)

With the initial condition u0(x0, t0) on the characteristic line ξ = ξ0 = x0 − ut0:

u(x, t) = u0(x0, t0)

i.e. the solution remains constant on the characteristic line.

The general transformation (x, y) → (ξ, τ) yields an result independent in u,
therefore the assumption u = const. for the first integration of the slope of the
characteristic line is valid, as long as it does not cross other characteristic lines.
In this case the nonlinearity would result in a new slope.



(b) graphical solution, e.g. for time level t = 1:

1 2

1 2

1

1

/21

u(x,0)

u

t

x

x

u(x0=1/2,t=1)

u(x,t=1)

u=0

u=1/2

u=1

C : x− x0 = u (t− t0) or t = t0 +
x− x0

u



Computational Fluid Dynamics I

Exercise 3 Appendix

Given is the PDE ∂u
∂t

+ 1
2
∂u
∂x

= 1.

1. Determine the characteristic slope and the characteristic solution.

2. Determine the solution at time level t = 1 for the initial condition u(t = 0, x) =
sin(πx).

a)

ut +
1

2
ux = 1

⇒ Ωt +
1

2
Ωx = 0

⇒ −Ωt

Ωx

=
dx

dt
|c =

1

2

dξ = 2dx− dt dτ = dt

ux = uξ · 2 ut = uξ · (−1) + uτ

⇒ −uξ + uτ +
1

2
· 2uξ = 1

⇒ uτ = 1

⇒ u (ξ, τ) = τ + c (ξ)

b)
u (t = 0, x) = sin (πx)

t = τ :

⇒ u (τ = 0, ξ) = sin
(π

2
ξ
)

ξ = 2x− t

= c (ξ)

⇒ u (ξ, τ) = τ + sin
(π

2
ξ
)

⇒ u (x, t) = t+ sin

(
π

(
x− 1

2
t

))
t=1

u (x, t = 1) = 1 + sin

(
π

(
x− 1

2

))



Computational Fluid Dynamics I

Exercise 4

1. The vorticity transport equation for unsteady one-dimensional flow is given:

ωt + uωx = νωxx

The viscosity ν (ν > 0) and the velocity u = u (x, t) are assumed to be known.
The equation should discretised for constant time and spatial steps ∆t,∆x:

xi = i∆x, tn = n∆t, ω(xi, t
n) = ωn

i

(a) Determine with the help of Taylor series:

• ωt for tn, resp. tn+1 (forward, resp. backward difference)

• ωx and ωxx around xi (central differences)

(b) Formulate an explicit and an implicit solution scheme for the PDE and check
the consistency.



Computational Fluid Dynamics I

Exercise 4 (solution)

1. (a) Discretisation of the time derivative:
Formulate Taylor series expansion for ωn+1 around ωn:

ωn+1
i = ωn

i + ωt|ni ∆t+ ωtt|ni
∆t2

2!
+ . . .

and reformulate to get forward difference:

ωt|ni =
ωn+1
i − ωn

i

∆t
− ωtt|ni

∆t

2
+ . . .

Formulate Taylor series expansion for ωn around ωn+1:

ωn
i = ωn+1

i − ωt|n+1
i ∆t+ ωtt|n+1

i

∆t2

2!
+ . . .

and reformulate to get backward difference:

ωt|n+1
i =

ωn+1
i − ωn

i

∆t
+ ωtt|n+1

i

∆t

2
+ . . .

Discretisation of the spatial derivative:
Formulate Taylor series expansion for ωi+1 and ωi−1 around ωi:

ωn
i±1 = ωn

i ± ωx|ni ∆x+ ωxx|ni
∆x2

2!
± ωxxx|ni

∆x3

3!
+ ωxxxx|ni

∆x4

4!
+ . . .

Subtract ωn
i−1 from ωn

i+1 to get finite difference expression for ωx:

ωx|ni =
ωn
i+1 − ωn

i−1

2 ∆x
− ωxxx|ni

∆x2

6
+ . . .

Add ωn
i+1 and ωn

i−1 to get finite difference expression for ωxx:

ωxx|ni =
ωn
i+1 − 2ωn

i + ωn
i−1

∆x2
− ωxxxx|ni

∆x2

12
+ . . .

(b) • Explicit solution scheme:

ωn+1
i − ωn

i

∆t︸ ︷︷ ︸
forward ωt

+uni
ωn
i+1 − ωn

i−1

2 ∆x︸ ︷︷ ︸
central ωx

−ν
ωn
i+1 − 2ωn

i + ωn
i−1

∆x2︸ ︷︷ ︸
central ωxx

= 0



Explicit, since only one term ωn+1
i is defined at the highest time level (n+1),

thus the equation can be explicitly solved.

⇒ ωn+1
i = fi(ω

n, un, ν,∆t,∆x)

truncation error

τ = L(ω) − L∆(ω)

= − ωtt|ni
∆t

2
− u ωxxx|ni

∆x2

6
+ ν ωxxxx|ni

∆x2

12
+ terms of higher order

= O(∆t,∆x2) consistent, since lim
∆t,∆x→0

τ = 0

• Implicit solution scheme:

ωn+1
i − ωn

i

∆t︸ ︷︷ ︸
backward ωt

+un+1
i

ωn+1
i+1 − ωn+1

i−1

2 ∆x︸ ︷︷ ︸
central ωx

−ν
ωn+1
i+1 − 2ωn+1

i + ωn+1
i−1

∆x2︸ ︷︷ ︸
central ωxx

= 0

Several terms ωn+1
i , ωn+1

i−1 , and ωn+1
i+1 are defined at the highest time level

(n+ 1), therefore the equation can not be explicityly solved. The unknowns
at the highest time level are implicityly coupled and build a tridiagonal
system of equations:

⇒ tridiagonal system of equations aiω
n+1
i−1 +biω

n+1
i +ciω

n+1
i+1 = fi(ω

n, un, ν,∆t,∆x)

truncation error

τ = ωtt|n+1
i

∆t

2
− u ωxxx|n+1

i

∆x2

6
+ ν ωxxxx|n+1

i

∆x2

12
+ terms of higher order

= O(∆t,∆x2) consistent, since lim
∆t,∆x→0

τ = 0



Computational Fluid Dynamics I

Exercise 5

1. The heat conduction equation is given:

Tt = αTxx, α = const. > 0

The equation is discretised with a 3-time level scheme (Dufort-Frankel scheme):

L∆(T ) =
T n+1
i − T n−1

i

2∆t
− α

T n
i+1 − (T n+1

i + T n−1
i ) + T n

i−1

∆x2
= 0

Check the consistency of this scheme.

2. Discretise the above equation with an explicit scheme. Check the stability of this
scheme with

(a) the discrete perturbation theory.

(b) the help of a periodical test function,

T (x, t) = V (t) cos(kx) resp. T n
i = V n cos(Θi)

with t = n∆t, x = i∆x, Θ = k∆x, by analysing, whether the amplitude V (t) is
in- or decreasing with the time level.

advice: cos(α± β) = cosα cosβ ∓ sinα sinβ



Computational Fluid Dynamics I

Exercise 5 (solution)

1. We are given a finite difference equation without the truncation error, it can be
determined by developing Taylor series for time level “n” and location “i”

T n±1 = T n ± T n
t ∆t+ T n

tt

∆t2

2
± T n

ttt

∆t3

6
+ terms of higher order

=⇒ T n+1 − T n−1

2∆t
= T n

t + T n
ttt

∆t2

6
+ tho

T n+1 + T n−1 = 2T n + 2T n
tt

∆t2

2
+ tho

apply in L∆(T ) :

Tt
n
i + Tttt

n
i

∆t2

6
+ . . .− α

(
T n
i+1 − 2T n

i + T n
i−1

∆x2︸ ︷︷ ︸
= Txxi + Txxxxi

∆x2

12
+ . . .

−Tttni
∆t2

∆x2
+ . . .

)
= 0

The truncation error of the spatial discretization Txxi + Txxxxi
∆x2

12
+ . . . can be ei-

ther determined by knowledge (second-order accurate approximation of second-order
derivative, see script pp. 3-3) or also via spatial Taylor series expansions. Finally,
the original PDE (left hand side) and the truncation error (right hand side) is

recovered =⇒ (Tt − αTxx)ni = −Tttt
∆t2

6
+ αTxxxx

∆x2

12
− αTtt

∆t2

∆x2
+ tho︸ ︷︷ ︸

τ

which together is the modified PDE.

consistency:

lim
∆x,∆t→0

τ = 0 ? only fulfilled, if lim
∆x,∆t→0

∆t2

∆x2
= 0

i.e. ∆t has to vanish faster than ∆x

• for finite ∆x, ∆t choose: ∆t
∆x
� 1, e.g. ∆t

∆x
= O(∆x)

• irrelevant for steady solution, since in this case Tt = Ttt = . . . = 0



2. discretisation:

δtT =
T n+1
i − T n

i

∆t
δxxT =

T n
i+1 − 2T n

i + T n
i−1

∆x2

explicit scheme:

T n+1
i = T n

i + σ
(
T n
i+1 − 2T n

i + T n
i−1

)
with σ =

α∆t

∆x2

(a) Discrete perturbation theory: For linear equations a perturbation ε (error)
satisfies the same difference equation as the solution, therefore

εn+1
i = σεni−1 + (1− 2σ)εni + σεni+1 mit σ = ν

∆t

∆x2
(*)

The analysis of the error behaviour yields the following results:

• Initial condition n = 0
ε0
i = ε für i = is ε0

i = 0 für i 6= is

ε

1

is− 2 is− 1 is is+ 1 is+ 2
i

• Time step n = 1 compute solution of equation * with values from n = 0:

ε1
is = σε0

is−1 + (1− 2σ)ε0
is + σε0

is+1 = (1− 2σ)ε

ε1
is+1 = σε0

is + (1− 2σ)ε0
is+1 + σε0

is+2 = σε

ε1
is−1 = σε0

is−2 + (1− 2σ)ε0
is−1 + σε0

is = σε

solution at all other points i < is− 1 and i > is+ 1 is zero.

from
max| ε1 |
max| ε0 | ≤ 1 folgt |σ | ≤ 1 bzw. | 1 − 2σ | ≤ 1

→ 0 < σ ≤ 1

Repeat procedure for following time steps (see script, p. 3-8ff), for n → ∞ the
asymptotical stability limit is 0 < σ ≤ 1/2.



(a) von Neumann stability analysis:

A periodic error function

T n
i,j = V n · eIkxx

= V n · eIkxi∆x

= V n · eIΘi

is applied to the original PDE

T n+1
i = T n

i + σ
(
T n
i+1 − 2T n

i + T n
i−1

)
such that

V n+1eIΘi = V neIΘi + σ
(
V neIΘ(i+1) − 2V neIΘi + V neIΘ(i−1)

)
divide by V neIΘi

V n+1

V n
= 1 + σ

(
eIΘ − 2 + e−IΘ

)
use e±IΘ = cos(Θ)± I sin(Θ) and G = V n+1

V n

G = 1 + σ (cos(Θ) + I sin(Θ)− 2 + cos(Θ)− I sin(Θ))

G = 1− 2σ (1− cos(Θ))

stable, if |G| ≤ 1 → −1 ≤ G ≤ 1 for − π ≤ Θ ≤ π

=⇒ σ ≤ 1

2
resp. ∆t ≤ ∆x2

2α



Computational Fluid Dynamics I

Exercise 6

1. For the convection equation

ut + a ux = 0, a = const. 6= 0

the following general scheme will be used:

un+1
i − uni

∆t
+ a (1−Θ) δxu

n
i + aΘ δxu

n+1
i = 0

where δxui =
ui+1 − ui−1

2 ∆x
and 0 ≤ Θ ≤ 1 (Θ = 0: explicit scheme, Θ = 1: implicit

scheme).

(a) Show with the help of the analysis of Hirt for which values of the parameter Θ
the scheme above will be stable.

(b) Check the result with the von Neumann analysis.



Computational Fluid Dynamics I

Exercise 6 (solution)

1. (a) Hirt’s analysis:

un+1
i − uni

∆t
+ a (1−Θ) δxu

n
i + aΘ δxu

n+1
i = 0

with

δxui =
ui+1 − ui−1

2 ∆x
becomes

⇒ un+1
i − uni

∆t
+ a (1−Θ)

uni+1 − uni−1

2 ∆x
+ aΘ

un+1
i+1 − un+1

i−1

2 ∆x
= 0

To recover the truncation error formulate a Taylor series expansion for the vari-
able u:

un+1
i = uni + ut|ni ∆t+ utt|ni

∆t2

2
+ uttt|ni

∆t3

6
+ . . .

uni±1 = uni ± ux|ni ∆x+ uxx|ni
∆x2

2
+ uxxx|ni

∆x3

6
+ . . .

and rearrange to get expressions for finite difference expressions:

un+1 − un

∆t
= unt +

∆t

2
untt +

∆t2

6
unttt + · · ·

uni+1 − uni−1

2∆x
= unx +

∆x2

6
unxxx + · · ·

un+1
i+1 − un+1

i−1

2∆x
= un+1

x +
∆x2

6
un+1
xxx + · · ·

= unx + ∆tunxt +
∆t2

2
unxtt︸ ︷︷ ︸

temporal Taylor series expansion for un+1
x

+ · · ·+O(∆x2)

follows

unt +
∆t

2
untt + a ((1−Θ)unx + Θ (unx + ∆tunxt)) +O(∆x2,∆t2) = 0

=⇒ unt + aux +
∆t

2
untt + aΘ∆tunxt +O(∆x2,∆t2) = 0

Index n for the time layer will be omitted:

=⇒ ut + aux = −∆t

2
utt − aΘ∆tuxt +O(∆x2,∆t2),



which is the modified PDE. Using the original PDE ut + aux = 0:

=⇒ utt = −auxt, utx = −auxx, utt = a2uxx

we can transform temporal derivatives to spatial ones:

⇐⇒ ut + aux = a2∆t(Θ− 1

2
)︸ ︷︷ ︸

numerical viscosity

uxx +O(∆x2,∆t2)

from the condition, that only a positive (numerical) viscosity has a damping or
stabilizing effect, it follows:

1

2
≤ Θ ≤ 1



(b) von Neumann analysis:

Approach for the error function ε:

εni =

φ=π∑
φ=−π

V n(Φ)eiΦI , Φ =
2π∆x

λ
, t = n∆t , I =

√
−1

Inserting the approach into the finite difference equation, omitting the sums and
requiring the equation is satisfied for every discrete wave angle Φ (see script, p.
3-10 to 3-12) yields:

V n+1eiΦI − V neiΦI

∆t
+a(1−Θ)

V n
(
e(i+1)ΦI − e(i−1)ΦI

)
2∆x

+aΘ
V n+1

(
e(i+1)ΦI − e(i−1)ΦI

)
2∆x

= 0

⇐⇒
V n+1

V n − 1

∆t
+ a(1−Θ)

(
eΦI − e−ΦI

)
2∆x

+ aΘ
V n+1

V n

(
eΦI − e−ΦI

)
2∆x

= 0

with eΦI = cos(Φ) + Isin(Φ) one receives a term for the amplification factor G:

⇐⇒ G =
V n+1

V n
=

1− (1−Θ)a∆t
∆x
Isin(Φ)

1 + Θa∆t
∆x
Isin(Φ)

The absolute value of a complex number is
∣∣a+b∗I
c+d∗I

∣∣ =
√

a2+b2

c2+d2
:

=⇒ |G|2 =
1 + (1− 2Θ + Θ2)

(
a∆t

∆x
sin(Φ)

)2

1 +
(
Θa∆t

∆x
sin(Φ)

)2

for a stable difference scheme it is required that: |G|2 ≤ 1 for −π ≤ Φ ≤ π:

(1− 2Θ)sin2(Φ) ≤ 0

according to the problem is Θ ≤ 1:

=⇒ 1

2
≤ Θ ≤ 1



Computational Fluid Dynamics I

Exercise 7

1. Given is the PDE (convection-diffusion equation):

L(u) = ut + a ux − νuxx = 0 with a = const., ν = const. ≥ 0

Check the convergence of the following generalised difference scheme with central
differences:

L∆(u) =
un+1
i − uni

∆t
+ (1−Θ)Res∆(un) + ΘRes∆(un+1) = 0

with Res∆(u) =
a

2∆x
(ui+1 − ui−1)− ν

∆x2
(ui+1 − 2ui + ui−1)

and the discretisation factor Θ:

Θ = 0 explicit scheme O (∆t,∆x2)
n• • •
n+1•

Θ =
1

2
implicit scheme O (∆t2,∆x2)
(Crank-Nicholson) n• • •

n+1• • •

Θ = 1 implicit scheme O (∆t,∆x2) n+1• • •
• n

Check with the general solution for L∆(u) the special cases
Θ = 0, 1

2
, 1 and the

convection-diffusion equation : a 6= 0 ν 6= 0
convection equation : a 6= 0 ν = 0
diffusion equation : a = 0 ν 6= 0



Computational Fluid Dynamics I

Exercise 7 (solution)

1. (a) From Lax’s theorem the convergence of a finite difference equation for an initial
value problem requires consistency and stability.

consistency (see as well exercise 4):

separate checking time and space using Taylor series expansion in x− and
t−direction:

t : un+1−un
∆t

= ut|n + ∆t
2
utt|n + ∆t2

6
uttt|n + . . .

x : Res∆(u) = aux|i − νuxx|i + a(∆x2

6
uxxx|i + . . .)− ν(∆x2

12
uxxxx|i + . . .)

= Res(u) +O (∆x2)

t : Res∆(un+1) = Res∆(un) + (Res∆(un))t|n∆t + (Res∆(un))tt|n∆t2

2
+ . . .

= Res(un) + (Res(un))t|n∆t +O (∆t2,∆x2)
apply to the difference scheme (with ut = −Res(u)⇐⇒ utt = −(Res(u))t ):
ut +Res(u) = (Θ− 1

2
)∆tutt +O (∆t2,∆x2) =⇒ consistent for ∆x,∆t → 0

accuracy: O (∆t ,∆x2), if Θ 6= 1
2

O (∆t2,∆x2), if Θ = 1
2

stability: von Neumann analysis (approach see exercise 6):

V n+1eiΦI − V neiΦI

∆t

+(1−Θ)V n
( a

2∆x

(
e(i+1)ΦI − e(i−1)ΦI

)
− ν

∆x2

(
e(i+1)ΦI − 2eiΦI + e(i−1)ΦI

))
+ΘV n+1

( a

2∆x

(
e(i+1)ΦI − e(i−1)ΦI

)
− ν

∆x2

(
e(i+1)ΦI − 2eiΦI + e(i−1)ΦI

))
= 0

with c = a∆t
∆x

and σ = ν∆t
∆x2

follows:

G =
V n+1

V n
=

1− (1−Θ)(2σ(1− cos(Φ)) + cI sin(Φ))

1 + Θ(2σ(1− cos(Φ)) + cI sin(Φ))

stability condition:

=⇒ |G|2 =
(1− (1−Θ)2σ(1− cos(Φ)))2 + ((1−Θ)c sin(Φ))2

(1 + Θ2σ(1− cos(Φ)))2 + (Θc sin(Φ))2 ≤ 1

⇐⇒ (1− 2Θ) (4σ2(1− cos(Φ))2 + c2 sin2(Φ))︸ ︷︷ ︸
≥0

− 4σ(1− cos(Φ))︸ ︷︷ ︸
≥0

≤ 0

=⇒ scheme is unconditionally stable for Θ ≥ 1
2



analysis for 0 ≤ Θ < 1
2
:

with sin2(Φ) = 1− cos2(Φ) = (1 + cos(Φ))(1− cos(Φ)):

=⇒ (1− 2Θ)(c2 + 4σ2)︸ ︷︷ ︸
≥0

+ (1− 2Θ)︸ ︷︷ ︸
>0

(c2 − 4σ2) cos(Φ)− 4σ︸︷︷︸
≥0

≤ 0

for c2 − 4σ2 > 0 is cos(Φ) = 1 the adverse case:

=⇒ (1− 2Θ)c2 ≤ 2σ

for c2 − 4σ2 ≤ 0 is cos(Φ) = −1 the adverse case:

=⇒ (1− 2Θ)σ ≤ 1

2

the outcome of this is the following stability range:

0

0.5

1

0 0.5 1 1.5 2

(1− 2Θ)σ

(1− 2Θ)c

stability range for 0 ≤ Θ < 1
2

stable region

instable region

(1− 2Θ)σ > 1
2

(1− 2Θ)σ < 1
2
((1− 2Θ)c)2

summary:

From consistency and stability follows convergence (theorem of Lax).

• consistency of the difference approximation is obtained for all parameters
(Θ, ν, a)

• stability is obtained

? 1
2
≤ Θ ≤ 1 for all values of (ν, a)

? 0 ≤ Θ < 1
2

see diagram

• instability is obtained for

? 0 ≤ Θ < 1
2

for the pure convection equation (ν = 0 or σ = 0)

? 0 ≤ Θ < 1
2

and σ > 1
2(1−2Θ)

for the pure diffusion equation

(a = 0 or c = 0)



0

0.5

1

0 0.5 1 1.5 2

(1− 2Θ)σ

(1− 2Θ)c

stability range for 0 ≤ Θ < 1
2

stable region

instable region

(1− 2Θ)σ > 1
2

(1− 2Θ)σ < 1
2
((1− 2Θ)c)2



Computational Fluid Dynamics I

Exercise 8

1. Formulate for the discretised Poisson equation

ui,j −Θx(ui−1,j + ui+1,j)−Θy(ui,j−1 + ui,j+1) = δ2fi,j,

Θx =
∆y2

2(∆x2 + ∆y2)
, Θy =

∆x2

2(∆x2 + ∆y2)

(a) the Jacobi–method

(b) the method of Gauß–Seidel point iteration with overrelaxation

(c) the method of Gauß–Seidel line iteration with overrelaxation

Check the stability of these methods with the help of the von Neumann analysis.



Computational Fluid Dynamics I

Exercise 8 (solution)

1. (a) Jacobi-method (ν is iteration counter):

uν+1
i,j = Θx

(
uνi−1,j + uνi+1,j

)
+ Θy

(
uνi,j−1 + uνi,j+1

)
+ δ2fi,j

stability, approach: uνi,j = uνexact,i,j + V νeIαi+Iβj, where uexact,i,j is the exact
solution of this equation, therefore

uν+1
exact,i,j + V ν+1eIαi+Iβj = Θx

(
uνexact,i−1,j + V νeIα(i−1)+Iβj + uνexact,i+1,j + V νeIα(i+1)+Iβj

)
+

Θy

(
uνexact,i,j−1 + V νeIαi+Iβ(j−1) + uνexact,i,j+1 + V νeIαi+Iβ(j+1)

)
+ δ2fi,j

where for the given definitions of Θx and Θy the terms uνexact,i,j and δ2fi,j fulfill
the original FDE and thus falls out, dividing by V νeIαi+Iβj then yields:

G =
V ν+1

V ν
= Θx

(
e−Iα + eIα

)
+ Θy

(
e−Iβ + eIβ

)
= 2 (Θx cos (α) + Θy cos (β))

with Θx = ∆y2

2(∆x2+∆y2)
, Θy = ∆x2

2(∆x2+∆y2)
and −π ≤ α ≤ π, −π ≤ β ≤ π

consider two cases:

2 (Θx cos (α) + Θy cos (β)) ≤ 2 (Θx + Θy) = 2

(
∆x2 + ∆y2

2 (∆x2 + ∆y2)

)
= 1

2 (Θx cos (α) + Θy cos (β)) ≥ 2 (−Θx −Θy) = 2

(
−∆x2 −∆y2

2 (∆x2 + ∆y2)

)
= −1

−1 ≤ G ≤ 1

Thus the Jacobi–method is stable.

(b) Gauß–Seidel point iteration with overrelaxation
(ũ is intermediate value):

ũi,j −Θx

(
uν+1
i−1,j + uνi+1,j

)
−Θy

(
uν+1
i,j−1 + uνi,j+1

)
= δ2fi,j

uν+1
i,j = uνi,j + ω

(
ũi,j − uνi,j

)
or

uν+1
i,j = uνi,j + ω

(
Θx

(
uν+1
i−1,j + uνi+1,j

)
+ Θy

(
uν+1
i,j−1 + uνi,j+1

)
+ δ2fi,j − uνi,j

)
with ω > 0 and the order of calculation i = 1, · · · , im and j = 1, · · · , jm for
uν+1
i,j



stability, approach see above:

V ν+1

V ν
= 1 + ω

(
Θx

(
V ν+1

V ν
e−Iα + eIα

)
+ Θy

(
V ν+1

V ν
e−Iβ + eIβ

)
− 1

)
with c = Θx cos (α) + Θy cos (β) and s = Θx sin (α) + Θy sin (β)

⇔ G =
V ν+1

V ν
=

1
ω
− 1 + c+ I s
1
ω
− c+ I s

⇒ |G|2 =

(
1
ω
− 1 + c

)2
+ s2(

1
ω
− c
)2

+ s2
=

1
ω2 − 2

ω
+ 1 + 2

ω
c− 2c+ c2 + s2

1
ω2 − 2

ω
c+ c2 + s2

with the condition |G|2 ≤ 1:

⇒ 1− 2

ω
+

4

ω
c− 2c ≤ 0 ⇔ ω − 2− 2c (ω − 2) ≤ 0

⇔ (1− 2c) (ω − 2) ≤ 0

because of Θx + Θy = 1
2

the value of c is between −1
2
≤ c ≤ 1

2
, therefore the

expression in the first bracket is 0 ≤ 1 − 2c ≤ 2, consider the adverse case
(1− 2c) = 2, then

⇒ ω ≤ 2

Thus the Gauß–Seidel point iteration with overrelaxation is stable for 0 < ω ≤ 2.



(c) Gauß–Seidel line iteration with overrelaxation:

−Θxũi−1,j + ũi,j −Θxũi+1,j = Θy

(
uν+1
i,j−1 + uνi,j+1

)
+ δ2fi,j

uν+1
i,j = uνi,j + ω

(
ũi,j − uνi,j

)
with ω > 0 and a line iteration in i-direction and the order of calculation j =
1, · · · , jm for uν+1

i,j .

stability, approach for uνi,j see above, ũi,j = uexact + Ṽ eIαi+Iβj :

⇒ −ΘxṼ e
−Iα + Ṽ −ΘxṼ e

Iα = Θy

(
V ν+1e−Iβ + V νeIβ

)
V ν+1

V ν
= 1 + ω

(
Ṽ

V ν
− 1

)

⇔ Ṽ

V ν

(
1−Θx

(
e−Iα + eIα

))
= Θy

(
V ν+1

V ν
e−Iβ + eIβ

)
Ṽ

V ν
=

1

ω

(
V ν+1

V ν
− 1

)
+ 1

⇔ G =
V ν+1

V ν
=

(
1
ω
− 1
)

(1− 2Θx cos (α)) + Θy cos (β) + IΘy sin (β)
1
ω

(1− 2Θx cos (α))−Θy cos (β) + IΘy sin (β)

⇒ |G|2 =

((
1
ω
− 1
)

(1− 2Θx cos (α)) + Θy cos (β)
)2

+ Θ2
y sin2 (β)(

1
ω

(1− 2Θx cos (α))−Θy cos (β)
)2

+ Θ2
y sin2 (β)

with the condition |G|2 ≤ 1 it follows:

⇒
(

1

ω2
− 2

ω
+ 1

)
(1− 2Θx cos (α))2 +

(
2

ω
− 2

)
(1− 2Θx cos (α)) Θy cos (β)

≤ 1

ω2
(1− 2Θx cos (α))2 − 2

ω
(1− 2Θx cos (α)) Θy cos (β)

with c = Θx cos (α) + Θy cos (β)

⇒
(

2

ω
− 1

)2Θx︸︷︷︸
≤1

cos (α)− 1


︸ ︷︷ ︸

≤0

(1− 2c)︸ ︷︷ ︸
≥0

≤ 0

With 2Θx cos (α)− 1 ≤ 0 and 0 ≤ 1− 2c ≤ 2, the expression in the first bracket
has to be 2

ω
− 1 ≥ 0

Thus the Gauß–Seidel line iteration with overrelaxation is stable for 0 < ω ≤ 2.



Computational Fluid Dynamics I

Exercise 9

1. The Poisson equation
∇2u = f(x, y)

is to be solved in general coordinates.

(a) Transform the equation from Cartesian to curvilinear coordinates (x, y)→ (ξ, η).

(b) Check the results of the general coordinate transformation with the formulation
for polar coordinates (x = r cos θ, y = r sin θ), where

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
.

(c) Discretize the transformed equation with central differences and formulate a
point Gauß-Seidel method for the solution. Explain the solution procedure with
red-black ordering.



Computational Fluid Dynamics I

Exercise 9 (solution)

1. (a) The Poisson equation
∇2u = f(x, y)

in Cartesian coordinates reads:

uxx + uyy = f(x, y)

Transformation into curvilinear coordinates (x, y)→ (ξ, η):

ux = ξxuξ + ηxuη

uxx = (ux)x = (ξxuξ + ηxuη)x

= ξxuξx + ξxxuξ + ηxuηx + ηxxuη

= ξx(ξxuξξ + ηxuξη) + ξxxuξ + ηx(ξxuηξ + ηxuηη) + ηxxuη

= ξxxuξ + ξ2xuξξ + 2ξxηxuξη + η2xuηη + ηxxuη

yields the Poisson equation in curvilinear coordinates:

ξ2xuξξ+2ξxηxuξη+η
2
xuηη+ξxxuξ+ηxxuη+ξ

2
yuξξ+2ξyηyuξη+η

2
yuηη+ξyyuξ+ηyyuη = f(ξ, η)

⇔

(ξ2x+ξ
2
y)uξξ+2(ξxηx+ξyηy)uξη+(η2x+η

2
y)uηη+(ξxx+ξyy)uξ+(ηxx+ηyy)uη = f(ξ, η) (∗)

(b) From

∇2 u =
1

r

∂

∂r

(
r
∂

∂r
u

)
+

1

r2
∂2

∂θ2
u = urr +

1

r
ur +

1

r2
uθθ

and r = ξ and θ = η it follows

∇2 u = uξξ +
1

r
uξ +

1

r2
uηη (∗∗)

Relation between polar and Cartesian coordinates:

x = ξ cos η y = ξ sin η

⇒ ξ =
√
x2 + y2 η = arctan

y

x



The partial derivatives of ξ and η with respect to x and y for the polar coordi-
nates are:

ξx =
x√

x2 + y2

ξy =
y√

x2 + y2

ηx = − y

x2 + y2

ηy =
x

x2 + y2

ξxx =
y2

(x2 + y2)
3
2

ξyy =
x2

(x2 + y2)
3
2

ηxx =
2xy

(x2 + y2)2

ηyy = − 2xy

(x2 + y2)2

Equation (∗) must be identical to equation (∗∗), comparison of coefficients for
uξξ, uξη, uηη, uξ and uη yields:

1 = (ξ2x + ξ2y) =

(
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2

=
x2

x2 + y2
+

y2

x2 + y2
=
x2 + y2

x2 + y2

= 1

0 = 2(ξxηx + ξyηy) = 2

((
x√

x2 + y2

)(
− y

x2 + y2

)
+

(
y√

x2 + y2

)(
x

x2 + y2

))
= 0

1

r2
= (η2x + η2y) =

(
− y

x2 + y2

)2

+

(
x

x2 + y2

)2

=
x2 + y2

(x2 + y2)2
=

1

x2 + y2

=
1

r2 cos2 θ + r2 sin2 θ

=
1

r2

1

r
= (ξxx + ξyy) =

y2

(x2 + y2)
3
2

+
x2

(x2 + y2)
3
2

=
x2 + y2

(x2 + y2)
3
2

=
1√

(x2 + y2)

=
1√

r2 cos2 θ + r2 sin2 θ

=
1

r

0 = (ηxx + ηyy) =
2xy

(x2 + y2)2
+

(
− 2xy

(x2 + y2)2

)
= 0



(c) Discretization of metric terms:

Discretize metric terms with central differences O(∆x2,∆y2), using
ξx = 1

J
yη, ξy = − 1

J
xη, ηx = − 1

J
yξ, ηy = 1

J
xξ, J = xξyη − yξxη, ∆ξ = ∆η = 1:

yη =
yi,j+1 − yi,j−1

2

xη =
xi,j+1 − xi,j−1

2

yξ =
yi+1,j − yi−1,j

2

xξ =
xi+1,j − xi−1,j

2

η

ξ

i, j i+1, j

i, j−1

i−1, j

j,

i,

i, j+1

How to compute second-order metrics terms, e.g., ξxx, assume we already have
computed all first-order metrics (yη, xη, yξ, xξ):

ξxx = (ξx)x =

(
1

J
yη

)
x

∂

∂x
(ξx) =

∂ξ

∂x

∂

∂ξ
(ξx) +

∂η

∂x

∂

∂η
(ξx)

= ξxξxξ + ηxξxη

=
1

J
yη

(
1

J
yη

)
ξ

− 1

J
yξ

(
1

J
yη

)
η

Now discretize also second-order metrics:

ξxx =
1

J
yη

[(
1
J
yη
)
i+1,j
−
(
1
J
yη
)
i−1,j

2∆ξ

]
− 1

J
yξ

[(
1
J
yη
)
i,j+1
−
(
1
J
yη
)
i,j−1

2∆η

]

Discretization of partial derivatives/PDE:

(
∂u

∂ξ

)
i,j

=
ui+1,j − ui−1,j

2∆ξ
+O(∆ξ)2(

∂2u

∂ξ2

)
i,j

=
ui+1,j − 2ui,j + ui−1,j

∆ξ2
+O(∆ξ)2



With a uniform computational mesh with ∆ξ = ∆η = 1 follows:

uξ =
ui+1,j − ui−1,j

2

uη =
ui,j+1 − ui,j−1

2
uξξ = ui+1,j − 2ui,j + ui−1,j

uηη = ui,j+1 − 2ui,j + ui,j−1

uξη =
ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4

This leads to a linear system of equations where the constant coefficients (a, b, c, d, e, f, g, h, i)
contain the geometrical information from the metric terms, solution with Gauß-
Seidel:

a · uν+1
i−1,j−1 + b · uν+1

i,j−1 + c · uν+1
i+1,j−1 + d · uν+1

i−1,j + e · uν+1
i,j

+f · uνi+1,j + g · uνi−1,j+1 + h · uνi,j+1 + i · uνi+1,j+1 = f(x, y)

ν

ν+1

ν+1

ν

ν+1

ν+1

ν

ν

ν+1
Generally, for a solution procedure with red-black ordering the mesh points are
split up into ”red” and ”black” points, like a checkerboard:

In the first stage of each iteration step the values at all red points are computed
with a Gauss-Seidel method, taking into account the surrounding black points
but no other red points. In the second stage the values are computed on the
black points, taking into consideration the red points that were computed in
the first stage. This allows for a vectorization of the solution procedure, as
the solution at different points can be computed simultaneously as they are not
recursively dependent on each other, as in a standard Gauss-Seidel method.



However, due to the computational stencil in this problem that uses all eight
surrounding points to compute the solution we have to use a larger seperation,
thus requiring more colors. The ordering for this problem here could look like
this:

Thus we have four different stages in each iteration step. For example, in the first
stage the values on the yellow points could be computed using the information
on the black, red, and green points. In the second stage the values on the green
points are computed using the values on the red, black, and the ones on the
already updated yellow points. This procedures is then performed for all colors
and allows for a vectorization of the given discretization equation.



Computational Fluid Dynamics I

Exercise 9 (appendix)

Transformation (x, y)→ (ξ, η):

∂

∂x
=
∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η
∂

∂y
=
∂ξ

∂y

∂

∂ξ
+
∂η

∂y

∂

∂η

⇒
(
ξx ηx
ξy ηy

)( ∂
∂ξ
∂
∂η

)
=

(
∂
∂x
∂
∂y

)
(1)

Inverse transformation (ξ, η)→ (x, y):

∂

∂ξ
=
∂x

∂ξ

∂

∂x
+
∂y

∂ξ

∂

∂y
∂

∂η
=
∂x

∂η

∂

∂x
+
∂y

∂η

∂

∂y

⇒
(
xξ yξ
xη yη

)(
∂
∂x
∂
∂y

)
=

( ∂
∂ξ
∂
∂η

)
(2)

To set equations 1 and 2 equal compute the inverse of equation 2:(
xξ yξ
xη yη

)−1( ∂
∂ξ
∂
∂η

)
=

(
∂
∂x
∂
∂y

)
(3)

⇔

(
yη −yξ
−xη xξ

)
∣∣∣∣xξ yξ
xη yη

∣∣∣∣
( ∂
∂ξ
∂
∂η

)
=

(
∂
∂x
∂
∂y

)
(4)

⇔ 1

J

(
yη −yξ
−xη xξ

)( ∂
∂ξ
∂
∂η

)
=

(
∂
∂x
∂
∂y

)
(5)

Now we can set the matrix in 1 and the matrix in 5 equal, such that(
ξx ηx
ξy ηy

)
=

1

J

(
yη −yξ
−xη xξ

)
(6)

where the so-called Jacobian J is computed by J = xξyη − xηyξ. Finally, the conversion of
each term is given by

ξx =
1

J
yη ξy = − 1

J
xη (7)

ηx = − 1

J
yξ ηy =

1

J
xξ (8)



Computational Fluid Dynamics I

Exercise 10

1. The Laplace equation
∇ · ~f = 0 , with ~f = ∇u

is to be solved on a curvilinear structured grid.

(a) Transform the equation for ~f into curvilinear coordinates (x, y) → (ξ, η) (con-
servative form) and discretize the equation for an equidistant grid in curvilinear
space.

(b) Formulate a discretization based on a finite volume method for the solution of

the equation for ~f . Reformulate the equation as a surface integral, define a
meaningful control volume and discretize the equation.

(c) Show that the formulation obtained with the transformation in cuvilinear coor-
dinates is identical to the finite volume formulation.



Computational Fluid Dynamics I

Exercise 10 (solution)

1. (a)

∇ · ~f = 0 ~f = ∇u =

(
ux
uy

)
=

(
g
h

)

(x, y)⇒ (ξ, η) ∇ · ~f = gx + hy = 0

with

gx = ξxgξ + ηxgη

hy = ξyhξ + ηyhη

follows for the terms in the square brackets

ξxgξ + ηxgη + ξyhξ + ηyhη = 0 | · J
Jξxgξ + Jηxgη + Jξyhξ + Jηyhη = 0

product rule

∂

∂ξ
(Jξxg + Jξyh) +

∂

∂η
(Jηxg + Jηyh)− g

[
∂

∂ξ
(Jξx) +

∂

∂η
(Jηx)

]
− h

[
∂

∂ξ
(Jξy) +

∂

∂η
(Jηy)

]
= 0

with metric terms

ξx =
yη
J

ξy = −xη
J

ηx = −yξ
J

ηy =
xξ
J

follows

∂

∂ξ
(Jξx) +

∂

∂η
(Jηx) = +

∂

∂ξ
yη −

∂

∂η
yξ = 0

∂

∂ξ
(Jξy) +

∂

∂η
(Jηy) = − ∂

∂ξ
xη +

∂

∂η
xξ = 0

final formulation in curvilinear coordinates

[J(ξxg + ξyh)]ξ + [J(ηxg + ηyh)]η = (yηg − xηh)ξ + (−yξg + xξh)η = 0

discretisation

(yηg − xηh)i+ 1
2
,j − (yηg − xηh)i− 1

2
,j + (−yξg + xξh)i,j+ 1

2
− (−yξg + xξh)i,j− 1

2
= 0



i− 1
i

i+ 1

j − 1

j

j + 1

D
A

B
C

xη,i+ 1
2
,j = xB−xA

∆η

procedure for the computation (example) for an element

yηg = yηux → (yηux)i+ 1
2
,j = (yη)i+ 1

2
,j · (ξxuξ + ηxuη)i+ 1

2
,j

For this we need the metric terms at the point i+ 1
2
, j, we can compute these for

example by second-order accurate central differences (other formulations possi-
ble)

yη,i+ 1
2
,j =

yB − yA
∆η

=
yB − yA

1

where yA and yB are the averages of the surrounding 4 grid points

yA =
1

4
(yi,j + yi+1,j + yi,j−1 + yi+1,j−1)

yB =
1

4
(yi,j + yi+1,j + yi,j+1 + yi+1,j+1)

The other metric terms, e.g., ξx,ηx, etc, can also be first transformed to the
inverse metric terms and then be discretized at i + 1

2
, j in a similar manner.

The terms uξ and uη can be computed as simple central differences on the
computational mesh, e.g.

uξ,i+ 1
2
,j =

ui+1,j − ui,j
1

(b) finite volume formulation

∫
τ

∇ · ~fdτ =

∮
A

~f · ~ndA ~f =

(
g
h

)
~ndA =

(
dy
−dx

)

→
∮
A

gdy − hdx = 0

Possible discretization with node-centered formulation (for mathematical posi-
tive direction)



i− 1
i

i+ 1

j − 1

j

j + 1

D
A

B
C

A

B

∆yi+ 1
2
,j

∆xi+ 1
2
,j

g
h ~n =

(
dy
−dx

)

(g∆y)i+ 1
2
,j − (h∆x)i+ 1

2
,j + (g∆y)i,j+ 1

2
− (h∆x)i,j+ 1

2

+(g∆y)i− 1
2
,j − (h∆x)i− 1

2
,j + (g∆y)i,j− 1

2
− (h∆x)i,j− 1

2
= 0

where the corresponding signs (+ for flux entering the volume, − for flux leaving
the volume) are contained in the ∆ terms:

∆xi+ 1
2
,j = xB − xA ∆yi+ 1

2
,j = yB − yA

∆xi− 1
2
,j = xD − xC ∆yi− 1

2
,j = yD − yC

∆xi,j+ 1
2

= xC − xB ∆yi,j+ 1
2

= yC − yB
∆xi,j− 1

2
= xA − xD ∆yi,j− 1

2
= yA − yD

give the surface over which the flux is integrated and the correct sign. The
coordinates at points A,B,C, and D are computed by averages of the surrouding
four grid points, as shown before.

(c) curvilinear form

(yη · g)i+ 1
2
,j −(xη · h)i+ 1

2
,j −(yη · g)i− 1

2
,j +(xη · h)i− 1

2
,j

−(yξ · g)i,j+ 1
2

+(xξ · h)i,j+ 1
2

+(yξ · g)i,j− 1
2
−(xξ · h)i,j− 1

2
= 0

(1)

finite volume formulation

(∆y · g)i+ 1
2
,j −(∆x · h)i+ 1

2
,j +(∆y · g)i− 1

2
,j −(∆x · h)i− 1

2
,j

+(∆y · g)i,j+ 1
2
−(∆x · h)i,j+ 1

2
+(∆y · g)i,j− 1

2
−(∆x · h)i,j− 1

2
= 0

(2)

the metric coefficients, e.g., xη, yξ, etc, are then equal to the lengths from the
finite volume approach ∆x and ∆y. For example for surface i+ 1

2
, j we have the

metric terms



xη,i+ 1
2
,j =

xB − xA
∆η

=
∆xi+ 1

2
,j

1

yη,i+ 1
2
,j =

yB − yA
∆η

=
∆yi+ 1

2
,j

1

The opposite signs in eqs. 1 and 2 are caused by opposite signs in metric terms
in comparison with the lengths, for example

−(yη · g)i− 1
2
,j = −yC − yD

∆η
(g)i− 1

2
,j =

yD − yC
∆η

(g)i− 1
2
,j = ∆yi− 1

2
,j(g)i− 1

2
,j

as we compute the metric terms going into positive ξ and η direction, but for the
lengths in the finite volume approach we follow the surface in positive rotation
direction, here counterclockwise.



Computational Fluid Dynamics I

Exercise 11

1. The Laplace equation ∇2u = 0 is discretized on a Cartesian grid, where the variables
are stored at the cell centers. The discretization is carried out with a finite volume
method, the values on the surface of the cell are reconstructed with the assumption
of a linear function, i.e., applying a first-order Taylor-series expansion around the
surface centroid located at (0, 0):

u(x, y) = u(0, 0) + ux(0, 0)x+ uy(0, 0)y

= a0 + a1x+ a2y

For the reconstruction on the cell surface the cell centered values of points 1-6, see
Figure, are used.

�
�
�
�

2

4

5 6

3

1
x

y

This yields a overdetermined, 6× 3 linear equation system

A

 a0
a1
a2

 =


1 x1 y1
1 x2 y2
...

...
...

1 x6 y6


 a0

a1
a2

 =


u1
u2
...
u6


The constants a0, a1, a2 can be determined by a least-squares approach. Thereby, the
constants are chosen such that the sum of squared errors,

∑
i(a0 + a1xi + a2yi− ui)2,

is minimal. This is achieved by solving

ATA

 a0
a1
a2

 = AT

 u1
...
u6





which yields the 3× 3 system n
∑
xi

∑
yi∑

xi
∑
x2i

∑
xiyi∑

yi
∑
xiyi

∑
y2i

 a0
a1
a2

 =

 ∑
ui∑
ui · xi∑
ui · yi


Determine the truncation error of the finite volume method.



Computational Fluid Dynamics I

Exercise 11 (solution)

1. From  n
∑
xi

∑
yi∑

xi
∑
x2i

∑
xiyi∑

yi
∑
xiyi

∑
y2i

 ·
 a0

a1
a2

 =

 ∑
ui∑
ui · xi∑
ui · yi


For an equidistant grid (n = number of points): 6 0 0

0 3
2
∆x2 0

0 0 4∆y2

 ·
 a0

a1
a2

 =

 ∑
ui∑
ui · xi∑
ui · yi


⇒ a0 =

1

6
(u1 + u2 + u3 + u4 + u5 + u6)

a1 =
2

3∆x2
· ∆x

2
(u2 + u1 + u6 − u3 − u4 − u5) =

1

3∆x
(u2 + u1 + u6 − u3 − u4 − u5)

a2 =
1

4∆y2
·∆y(u3 + u2 − u5 − u6) =

1

4∆y
(u3 + u2 − u5 − u6)

From u(x, y) = a0 + a1x+ a2y

∇u =

(
ux
uy

)
=

(
a1
a2

)
Using Gauß’ theorem for ∇2u = 0∫
τ

∇ · ~f dτ =

∮
A

~f · ~n dA =

∮
A

(
ux
uy

)
· ~n dA = 0 with ~f = ∇u =

(
ux
uy

)

Compute

∫ (
ux
uy

)
· ~n dA :

normal vector ~n for side 1 to 4:

side 1: ~n =

(
−1
0

)
side 2: ~n =

(
1
0

)
side 3: ~n =

(
0
−1

)
side 4: ~n =

(
0
1

)
∫ (

ux
uy

)
· ~n dA = −a1(side 1) ·∆y + a1(side 2) ·∆y − a2(side 3) ·∆x+ a2(side 4) ·∆x = 0

= (uxx + uyy) ∆x∆y



Use uxx to evaluate the truncation error (same procedere for uyy):

uxx =
a1(side 2)− a1(side 1)

∆x

a1(side 1) =
1

3∆x
(ui,j+1 + ui,j + ui,j−1 − ui−1,j+1 − ui−1,j − ui−1,j−1)

a1(side 2) =
1

3∆x
(ui+1,j+1 + ui+1,j + ui+1,j−1 − ui,j+1 − ui,j − ui,j−1)

=
1

3∆x2
(ui+1,j+1 + ui+1,j + ui+1,j−1 − 2ui,j+1 − 2ui,j − 2ui,j−1 +

+ui−1,j+1 + ui−1,j + ui−1,j−1) (∗)

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

x

y τ
i, j

i−1, j+1

i−1, j

i−1, j−1 i, j−1 i+1, j−1

i+1, j

i+1, j+1i, j+1

A
side 4

side 3

side 2side 1

Taylor series (multidimensional):

f(x, y) =
∞∑

s = 0
t = 0

1

s! · t!
· ∂

s+tf

∂xs ∂yt
(x− x0)s (y − y0)t

Here for ui+1,j+1 (similar for the remaining terms...):

u(x+ ∆x, y + ∆y) = u(x, y) + ∆x · ux + ∆y · uy + ∆x∆y · uxy +
∆x2

2
· uxx +

∆y2

2
· uyy

+
∆x2∆y

2
· uxxy +

∆y2∆x

2
· uxyy +

∆x3

6
· uxxx +

∆y3

6
· uyyy

+
∆x3∆y

6
· uxxxy +

∆y3∆x

6
· uxyyy +

∆x2∆y2

4
· uxxyy

+
∆x4

24
· uxxxx +

∆y4

24
· uyyyy + ...

Inserting Taylor series in (∗) yields:

uxx =
1

3∆x2

(
3∆x2 · uxx + ∆x2∆y2 · uxxyy +

∆x4

4
· uxxxx

)
=

(
uxx +

∆y2

3
· uxxyy +

∆x2

12
· uxxxx

)



⇒ Truncation error for uxx: τ = O(∆x2,∆y2)

Similar for uyy, therefore truncation error τ = O(∆x2,∆y2)


