Computational Fluid Dynamics I

Exercise 1

1. Formulate the conservation of mass for a two-dimensional infinitesimal volume as
shown in the sketch.

Y, v}

dr dy

dx

- T, U

(a) Formulate the conservation equation in integral form and derive its differential
form.

(b) Formulate the differential equation in a non-conservative form.

2. Reformulate the conservative form of the 2-D Euler equations in Cartesian coordinates
into a form with the variables V = (o, 7, E)" and the substantial derivative %‘t/.

3. Derive the potential equation for compressible flow from the Euler equations under the
assumption of steady, isoenergetic, and irrotational flow (( = 0 = ds = 0 (Crocco’s

theorem) = Vp = %‘ Vo= Vp=a*Vyp).

Qs



Computational Fluid Dynamics I

Exercise 1 (solution)

1. (a) conservation of mass:

J(ov
dy

aUl — . []1 — Q
- Hy - ndA = -
BT dT—i-% 1-nd 0 , H1=Q17:Q(Z)
Y, v}
@
) AT IAy@
e
Ax
@
- X, U
© Ffl-ndA:( )( ):—Qudy
@ H,-id A:( )( ) = —ovdx
— ( U+ (Q )Aa:)d "
@ H3 -ndA = ((Q +8(g'u) Az)dz) (dy) (QU + d(g )Al')d
T (QU+8(9 )Ay)d:r 9 ov
@ H, -ndA= ((gv+3(9“)A dm) (0) (ov + (Q =2 Ay)dx
Og (ou)
a7 - A
:>/6th —|—/ QUdﬂH—/(gu—i— 5 )d
AT Az Ay
+/( v+—<agv)Ay)d:B—|—/—gudy =0
Az Ay
- 9o d(ou)
AT,Ax,AIZIEdT7d$,dy = EdT o dx + ( or A[L’)dy + (QU +
do  O(ou)  9I(ov) _ Do ou\
< 8t+ 8$+8y _8t+v ov =0

——

ov

)Ay)d:v —oudy =



Alternative solution: use Gauss theorem

j{gﬂ ndA = /div(gﬁ)dT

A
3,
- /—QdT + /div(gﬁ)dT —0
ot .
. do L
Alrlg}iﬂ' :E‘f’v@v—o
(b) conservative form: % + V- (ov)
0
= STV +0V -7
—_———

Substantial /material derivative Do

non-conservative form: @ +oV-T =0

Dt



2. o+ (ou)z + (ev)y = 0 (mass)
(ou) + (ou® + p)s + (ouv), = 0 (x— momentum)
(o) + (ouv), (QU +p)y, = 0 (y— momentum)
(0E); + (ouE + up), + (ovE +vp), = 0 (energy)

Do
0t + upy +vo, + o(uy +v,) = 0<:>——|—QV

conservation of mass: Dt
r-momentum eq.. : ous + puty, + vy + ugr + u(ou), + u(ov)y +p. =
oUt + QUL + VU, + U (Qt + (ou), + (Qv)y) +p, =
=0 (mass—c?);servation eq.)
Du
0 Di Pz =
P
Dt px =
energy equation: oL + oub, + QUEy+
Eo; + E(ou), + E(QU)Q‘F(Up)x + (vp)y = 0
=0 (mass—;;lservation eq.)
DE

D+ (e +)) = 0

3. Derivative of pressure can be transformed to derivative of density:

P o o) op
Vp = ( z) _ (aiaﬁ) _ (aﬁaﬁ) — 8QVQ =aqa VQ a is speed of sound
0o Oy do Oy

Introduce potential ®:
v=Vo u=%o, , v=29o, dp = a*dp

Euler equations (2-D, steady for Cartesian coordinates) :

(ou)s + (ov), = 0
(QU2 "’p)m + (qu)y
(ouv), + (ov* +p)y = 0

ouuy, + u(ou), + u(ov), y tovuy +p; = 0 |- u

o

ouv, + v(ou), +v(ov)y +ovv, +p, = 0 |-v

[e=]

@l

o O



Replace u and v by potential ®:

guzCDM + ouv®yy +up, = 0 n
ouv®,, + QU2(I)yy +uvp, = 0

1
WPy, + 2uv®,, + 2Py, + E( up, +vp, ) =0

(2)ve =(2)-a*Ve

1 1
= u?®,, + 2uvd,y, + v2<1>yy +ua®= o, + an—Qy =0
0 0
with the conservation of mass UQy +V0y = —0Uy — 0Uy = —0Puy — 0Dy,

potential equation: (u? — a®)Pyy + 2uvd,, + (v* — aQ)(I)yy =0



Computational Fluid Dynamics I

Exercise 2

1. (a) Derive the vorticity transport equation and the Poisson equation for the stream
function ¥ for a two dimensional incompressible and viscous flow.

(b) Formulate the boundary conditions for the stream function and the vorticity
component at the boundaries of the channel flow domain shown in the sketch.

VIDIIIIIIA . VPP IDIIIV

— auE(y) Uy
- 9Ve_ — oV, _
0X 57)?‘0
Y,V
Wall

2. Formulate for incompressible flows (without taking into account the energy equation)

(a) the Euler equations
- with the velocity vector ¥ and the pressure p
- with stream function ¥ and vorticity component w
(b) the potential equation
- with the velocity components u, v (Cauchy-Riemann differential equation)
- with ®
- with ¥

Determine for a two-dimensional and steady flow the characteristic lines and the type
of the equations.



Computational Fluid Dynamics I

Exercise 2 (solution)

1. (a) Navier-Stokes equations 2D, incompressible flow (p = const = p; = 0):
Uy +v, = 0

1

Up + Uy + VUy + —pp = vV2u
P
1

v 4wy + oy + —p, = vV
p

—

The vorticity transport equation is obtained by taking the curl (V x f) of the

momentum equations: %(y—momentum equation) - %(x—momentum equation)
1
Vgt + UgpVp + UVgy + Uz Uy + VUpgy + ;pa:y — VQ('U:L«
: —
T Uyt T UyUy T Ulgy — Uyly — Vlyy — Py —y)

where the pressure terms fall out:

(V2 =1y e+ Ua (Ve — ) + vy (Ve — ) +0 (v —uy)y + (v —1uy)e = vV (0, —uy)

~
=0 (mass-conserv. eq.)

With the vorticity component w = v, — uy:

W+ UWy + vwy = vV2w
convection of vorticity diffusion of vorticity
Dw
= — = vVw
Dt

which is the vorticity- (or eddy-) transport equation. The Poisson equation for
the stream function V¥ is obtained with u = V,,v = —W,:

—wW = Uy Uy =V, + W, = ViU

Finally, we have two coupled partial differential equations for the two variables w
and W, the velocities u and v in the vorticity-transport equation can be replaced
by u =W, and v = —¥,.



(b) We have boundary conditions given for u and v, but we need them for w and :

e In- and outflow boundary:
The velocity profile u(y) is given and we know that ¥, = % = u, therefore
integration of d¥ = u(y)dy yields:

Vp(y) = /y up(y)dy + U (Ywan)

Ywall

where the value at the wall ¥ (yyan) can be chosen arbitrary as our PDE
contains only derivatives of W. For the vorticity boundary condition we
compute the derivatives of u and v:

3UE(y)
dy

WE = Vg — Uy = —

e Solid wall:
The no slip condition © = v = 0 holds, therefore v = ¥, = 0 = VY =
const.
From the Poisson function for the stream function ¥,, + ¥,, = —w with
V.., =0:
= —Wyall = Uy = \ijy and Uy, = 0 = \If%wau

Therefore we use a Taylor series expansion for yyan:

Ay?

qj(ywall + Ay) = \Ij(ywall) =+ ‘I]y(ywall) Ay —+ \Ilyy(ywadl)_ 4.
H,_/ 2
=0
= Uyy (Ywan) =2 Ay
U (Ywall + AY) — U (Yyea
= W(Ywa) = —Vyy(Ywan) = —2 (Ywan y) (Ywan)

Ay?



2. (a) Euler equations for incompressible flow (7, p):
V-u=0
Dv 1
— +-Vp=0
Dt p b
characteristic lines (steady 2D flow):
Uy +v, = 0 o8 0y 10 u
uux—i—vuy—|—1/ppx = (0 u@x—i—v@y 0 Eax v =0
0 udy +v0, <0, p
w, +voy +1/pp, = 0 ’
Use chain rule of PDE (u, = uq, + ugS,) to transform PDE to
uldy + v82, 0 %Qw va |+ | uS:+vS, 0 /%Sx Vg
0 uldy +uQy L Pa 0 uS; +vS, 28, Ds

crosswise derivative

We need the determinant of the coefficients matrix of the crosswise derivatives

to be zero:
Q, Q, 0 . .
u, + v, 0 S | =0 = —(u +0Q,)~Q2 — (u, +vQ,) -2
0 uQ, +0Q, 10, p p

Q, 0?2 dy Q, v Q,
(:)(qu%—v)(szL ) O:>dx 9, u or a, V

i. e. 1 real, 2 imaginary characteristic lines = mixed hyperbolic elliptic type

Euler equations (2D) V¥, w:

q (2D) P = —w
Dw
Dt

characteristic lines (steady flow):
Vo + 0, =—-w o Opz + Oyy 1 v\ 0
uwy +ow, =0 0 u0d, + v0, w )

Q2+ Q7 0
0 ufly, + v§},

to solve:

=0 = (u, +vQ,) (02 + 932/)

= see Euler equations (v, p)



(b) Euler equations (incompressible, 2D, irrotational: w = 0):
(Y, =u,V, =—v,0, =u,®, =)

Ve = o, + o, =0 Potential formulation ¢ = V®

VW = U, +V, =0 Stream function formulation

for which the characteristic slopes are computed by

dy —Q
— 02402 = A i
Q=8+, 0:>d:1: o,

=+v-1
which results in two imaginary lines = the PDE is of elliptic type.

Either of the above second-order PDEs can be transformed to a system of two
first-order PDEs:

Uy +v, =0

Uy —uy =0

which in this case are known as the Cauchy-Riemann differential equation, to
compute the characteristic lines solve:

d Q.
:0:>Q§+Q§:O<:>—y:——:i\/—1

Q. Q,
‘ dz Q,

—Q, Q

i. e. 2 imaginary characteristic lines = elliptic type (same results as above)



Computational Fluid Dynamics I

Exercise 3

1. Consider the non-linear, hyperbolic partial differential equation

Uy +uu, =0

(a) Determine the characteristic line and the characteristic solution.

(b) The following initial condition is given:

0 for
u(z,t=0)=< = for
1 for

z <0
0<zr<l1
x> 1

Determine the solution for the time levels t:% and t=1 in the (x,t)-diagram

1 u(x,O)\
| -
1 2 X
A
1
Y,
-
1 2 X



Computational Fluid Dynamics I

Exercise 3 (solution)

1.

(a) PDE: u; + uu, = 0:

Use coordinate transformation
Uy = Uy + ugS;
uy = ufl + ugS;
and fill into PDE:
ua€l + ug Sy + u(ugQusS,) =0
= (2 + ufdy) ug + (S; + uSy)usg =0
T
Set () = 0 for the cross-wise derivative uq to be undetermined and determine
the slope of the characteristic line:

—Q  dr
Q. dt "
When assuming u = const. for the slope of the characteristic line, integration
from xg, to yields the characteristic line C:

Q=0 +uQ, =0

r — T

C: xz—xzo=u(t—1ty) or t=ty+

The characteristic solution is obtained by transforming the PDE from (z,y) to
(1,€): dr = dt, d§ = dx — udt:

up = &ug + Uy = —uug + U,

Uy = g + Tplr = Ug
apply to PDE =

—ute + Uy +uug = ur =0

That is, the value of v will be constant in time on each individual character-

istic curve due to the absence of any source/sink terms in the original PDE.
Integration over 7 with £ = x — ut = const. =

u(r,§) = c(§)
With the initial condition ug(xg,to) on the characteristic line & = &, = x¢ — uty:
u(z,t) = uo(xo, to)

i.e. the solution remains constant on the characteristic line.

The general transformation (z,y) — (&, 7) yields an result independent in wu,
therefore the assumption u = const. for the first integration of the slope of the
characteristic line is valid, as long as it does not cross other characteristic lines.
In this case the nonlinearity would result in a new slope.



(b) graphical solution, e.g. for time level ¢t = 1:

u(x,t=1

u(x0=1/2,t=1)

1 2
u=0
u=1
u=1/2
1 2
C: xz—x9=u(t—1ty) or t:t0+m_x0



Computational Fluid Dynamics I

Exercise 3 Appendix

: : ou 10u __
Given is the PDE 5t 3o = 1.

1. Determine the characteristic slope and the characteristic solution.
2. Determine the solution at time level ¢ = 1 for the initial condition u(t = 0,z) =
sin(mx).
a)
Uy + §ux =1
1
Qt dx 1

Q. a3

A€ =2dx —dt  dr = di
Uy = Ug - 2 w = ug - (—1) +u,y

1
:>—u5~|—u7—|—§-2u5:1

= u, =1
sul&T)=7+c(§



Computational Fluid Dynamics I

Exercise 4

1. The vorticity transport equation for unsteady one-dimensional flow is given:
Wy + UW; = Vg

The viscosity v (v > 0) and the velocity u = u (z,t) are assumed to be known.
The equation should discretised for constant time and spatial steps At, Ax:

r; =1Ax, t"=nAt, w(z;,t")=w!

(a) Determine with the help of Taylor series:

e w; for t", resp. t"*! (forward, resp. backward difference)

e w, and w,, around x; (central differences)

(b) Formulate an explicit and an implicit solution scheme for the PDE and check
the consistency.



Computational Fluid Dynamics I

Exercise 4 (solution)

1. (a) Discretisation of the time derivative:

Formulate Taylor series expansion for w™*1 around w®:

t2
wz’,“rl = wzn + Wt’?At"’ wttl?? + ...

and reformulate to get forward difference:

n+1 n

Wt‘z‘ = At th‘?? + ...

Formulate Taylor series expansion for w™ around w™*!:
2
n__ ntl n+1 n+1 At
wi =W = weli T At + wyel; o1 +

and reformulate to get backward difference:

n+1 n
n+l wi — W, n+1 At
2 i

wt\l Al L + wtt\ 5

Discretisation of the spatial derivative:
Formulate Taylor series expansion for w;; and w;_; around w;:

Ax? n . Ax? . Azt

Subtract wj' | from wj,; to get finite difference expression for w,:

n __ . n n n
Wity = W' £ wal; AT + wasl;

n n 2
n_ Wiy — Wi n A

i 2 Ax 6

Add w}, | and w}' | to get finite difference expression for wy,:

Wy

n n n 2
Wity — 2w twity Wanea| Az 4
TTXT |q A
Ax? 12

n —_—
wxx|i —

(b) e Explicit solution scheme:

n+1 n n n n n

Wi Wi e Wi T Wi Wi T 2w Fwity 0
At ' 2 Az Ax?
vV WV vV

forward  w¢ central  wg central  wgq

[ J/ J/ J/

+ ...



Explicit, since only one term w?“ is defined at the highest time level (n+1),
thus the equation can be explicitly solved.

= W?Jrl = fi(w",u”,y,At,Ax)

truncation error

T = L(w) — La(w)

At Ax? Ax?
= W]} o U Wags |y & + V Wagaolr T2 + terms of higher order
= O(At,Az?) consistent, since lim 7 =0
At,Ax—0

Implicit solution scheme:

n+1 n n+1 n+1 n+1 n+1 n+1
W; o W Lt Wiptr — Wi —y wipr — 2w, Hwy —0
At ! 2 Az Ax?
N / NS -~ v NS -~ v
backward  wy central  wy central Wy

Several terms w!*', W', and wi}' are defined at the highest time level

(n+1), therefore the equation can not be explicityly solved. The unknowns
at the highest time level are implicityly coupled and build a tridiagonal
system of equations:

= tridiagonal system of equations a Wi oW e = fiw™, u”, v, At, Ax)

truncation error

a1 At g Az g Az
T = wyl; + - U Woga|; i e + V Woggal, 1 ETH + terms of higher order
= O(At, Az?) consistent, since lim 7 =10

At,Az—0



Computational Fluid Dynamics I

Exercise 5

1. The heat conduction equation is given:
T, =aol,,, «o=const.>0
The equation is discretised with a 3-time level scheme (Dufort-Frankel scheme):

_nttemtt T - (A TN+ T

La(T) At Az? =0

Check the consistency of this scheme.

2. Discretise the above equation with an explicit scheme. Check the stability of this
scheme with
(a) the discrete perturbation theory.
(b) the help of a periodical test function,

T(x,t) =V (t) cos(kx) resp. T'=V" cos(O1)

with t = nAt, © = iAz, © = kAz, by analysing, whether the amplitude V (¢) is
in- or decreasing with the time level.

advice: cos(a £ ) = cosa cosf F sina sinf3



Computational Fluid Dynamics I

Exercise 5 (solution)

1. We are given a finite difference equation without the truncation error, it can be

(1352

determined by developing Taylor series for time level “n” and location “i

n+tl n n nA]f2 n At? :
T = T"+T]PAt+ TttT + T;tttT + terms of higher order
Tn+1 _ Tnfl . . AtQ
= w7 T T tho

n+1 n—1 n nAt2
T T = 2T 4 2T + tho

apply in La(T) :

At? Th, = 2T + T At?
T4+ Tyl ——+ ... —«a as Ll ) =0
tz ttt@ 6 ( R AxQ ) tt’L sz
_ Ax?
The truncation error of the spatial discretization T,.; + TxmmAl—f + ... can be ei-

ther determined by knowledge (second-order accurate approximation of second-order
derivative, see script pp. 3-3) or also via spatial Taylor series expansions. Finally,
the original PDE (left hand side) and the truncation error (right hand side) is

" At? Ax? At?
recovered - (T;f - OéTCCCC>Z = \_EttT + aTIIIIT - OéT'ttA—x2 + th(i
P4

which together is the modified PDE.
consistency:

: o At?

lim 7 =07 only fulfilled, if lim — = 0
Az, At—0 Az, At—0 Ax?

i.e. At has to vanish faster than Az

e for finite Az, At choose: £ < 1, e.g. &L = O(Ax)

e irrelevant for steady solution, since in this case T, =Ty =... =0



2. discretisation:

Tntl _n r . =20+ 1"
5 A~ i 5sz — i+1 i i—1
! At Ax?
explicit scheme:
mn mn mn mn mn : aAt
T = T0 4o (T, — 2T + T1)) with o = ~—

(a) Discrete perturbation theory: For linear equations a perturbation e (error)
satisfies the same difference equation as the solution, therefore

et = oel | + (1 — 20)e} + oy, mit o0 =v—s (*)

The analysis of the error behaviour yields the following results:

e Initial condition n = 0

0_ .. s 0_ .. . .
e, =¢ fir 1=1s e, =0 fir i #is

1 /\
} | } f 1

is—2 1s—1 18 is+1 is+2

e Timestep n = 1 compute solution of equation * with values from n = 0:

1 0 0 o _
€5 = 0651+ (1 —=20)e;, +og5 = (1—20)¢
1 - 0 0 0o _
€isg1 = 0&,+ (1 —20)e;, +0ej,,, = 0¢
1 0 0 0
Eiso1 = 08y o+ (1 —=20)e;, | + o6, =o0¢

solution at all other points ¢ < is — 1 and ¢ > is + 1 is zero.
1
f max|e | p gl <1 bzw. |1 —20] <1
rom max[ 7] = olgt |o| < AV o| <
- 0<o <1
Repeat procedure for following time steps (see script, p. 3-8ff), for n — oo the

asymptotical stability limit is 0 < o < 1/2.



(a) von Neumann stability analysis:
A periodic error function

n o n Ik,
Ty, = Vi-e™

Vn . elk’ziAx

= VY. el@i
is applied to the original PDE
T =T +o (Tﬁu — 217" + Tz‘n—l)
such that
Vrtlel®i i lei g o (Vn€]®(i+1) _ oyl 4 Vnel@(i—l))
divide by V7el®

Vn+1
Vn

:1+0'(€]®—2+6_I@)

use 1€ = cos(0©) £ I'sin(0) and G = V‘jzl

G = 14 0(cos(O)+ Isin(©) — 2+ cos(O) — Isin(O))
G = 1—20(1—-cos(0))

stable, if G| <1 —- —-1<G<1 for =7 <O<7
1 Ax?
— o < = resp. At < —
2 2x



Computational Fluid Dynamics I

Exercise 6

1. For the convection equation
u+au, = 0, a=const. #0

the following general scheme will be used:

uq.H'l —uml

o B SIS n ntl
A7 +a(l—0)4ul +a0Od,u; 0

where §,u; = % and 0 < © <1 (O = 0: explicit scheme, © = 1: implicit
x

scheme).

(a) Show with the help of the analysis of Hirt for which values of the parameter ©
the scheme above will be stable.

(b) Check the result with the von Neumann analysis.



Computational Fluid Dynamics I

Exercise 6 (solution)

1. (a) Hirt’s analysis:

ut —
# +a(1 — @)dvu?—i—a@dvu?H =0
with
S — Ujt1 — Ui—1
e 2 Ax
becomes
= u' ul o —ul un""l — un'H
= % z+a1_@ i+1 Zil—I—a@ i+1 i—1 =0
At ( ) 2 Ax 2 Ax
To recover the truncation error formulate a Taylor series expansion for the vari-
able u:
At? At?
U?"l‘l = u?+ut|?At+utt|?T+Uttt|?T+
Ax? Ax?
ul, = ul TugllAv+ umwT - umwa +...

and rearrange to get expressions for finite difference expressions:

untt — At At?

A A

ull | —u 2
+1 +1
uth — Ui B A:C2un+1 4.
n n AtQ n 2
temporal Taylor ser;; expansion for 421!

follows

At
uy + 7u$ +a((1—0)ul +06 (ul+ Atul,)) + O(Az* At?) = 0
A
Wt au + gu; +aOAW, + O(AL, A) = 0

Index n for the time layer will be omitted:

At
= uy + au, = — U~ aOAtug + O(Ax?, At?),



which is the modified PDE. Using the original PDE u; + au, = 0:

2
= Uy = — AUy, Uty = —AQUgy, Ut = A Ugy

we can transform temporal derivatives to spatial ones:

= u + au, = a>At(O — %) Uge + O(AZ?, AL?)
—_———

numerical viscosity

from the condition, that only a positive (numerical) viscosity has a damping or
stabilizing effect, it follows:

<O<1

N | —



(b) von Neumann analysis:

Approach for the error function e:

_27rAx
==

¢=m
€ = Z V(@) @
¢p=—m

t=nAt, [=+-1

Inserting the approach into the finite difference equation, omitting the sums and
requiring the equation is satisfied for every discrete wave angle ® (see script, p.
3-10 to 3-12) yields:

Vot piel _ Vn€i<i>1+ . @)Vn (e(iJrl)‘I)I _ e“f”‘“) . Ganrl (6(i+1)<1>1 B e(ifl)'b[)
Al “ 2Nz “ 2Nz
yntl 4 —®J dI —®J
—1 (e —e ) yntl (e —e )
V’ﬂ
N A — 1-0)——— 2 4+ 40 -0
Ar Pl =@l O

with e®! = cos(®) + Isin(®) one receives a term for the amplification factor G:

vert 1 —(1 - ©)aXtsin(P)
Vro 14 Oaktlsin(®)

_ a?4b2 .

-V &2

14 (1-20 + 0?) (a2Lsin(d))?
1+ (@a%sm(fb))2

— G =

a+bxl
cHdxI

The absolute value of a complex number is ‘

> ‘G‘z =
for a stable difference scheme it is required that: |G|? <1 for —7 < ® < 7

(1—20)sin*(®) <0

according to the problem is © < 1:

1



Computational Fluid Dynamics I

Exercise 7

1. Given is the PDE (convection-diffusion equation):
L(u) = uy+au, —vug, = 0 with a = const., v =const. > 0

Check the convergence of the following generalised difference scheme with central
differences:
u’(l+1 —u?

La(u) = thZ + (1 — ©)Resa(u™) + OResa(u™th) = 0

with ResA(u) = L (ui—H - Ui_l)—L (UZ‘+1 - QUZ + Ui_1>
2Azx Ax?

and the discretisation factor O:

= licit sch At, Az? ?
© =0 explicit scheme O (At, Az?) .
1
© = = implicit scheme O (At?, Az?) o9 onil
(Crank-Nicholson) oo on
—1  implicit sch At, Az? D
© implicit scheme O (At, Az?) |

Check with the general solution for La(u) the special cases

0 =0, %, 1 and the
convection-diffusion equation : a#0 v #0
convection equation a#0 v=0
diffusion equation a=0 v#0



Computational Fluid Dynamics I

Exercise 7 (solution)

1.

(a) From Lax’s theorem the convergence of a finite difference equation for an initial

value problem requires consistency and stability.

consistency (see as well exercise 4):

separate checking time and space using Taylor series expansion in x— and
t—direction:

n+l_,n
t: u u — ut’n

At tu |n + _uttt‘n
T Resa(u) = aug|; — l/um| + a( umx| +...)— V(Alé Upgaa|i + - -)
= Res(u) + O (Az?)
t: Resa(u™') = Resa(u") + (Resa(u™))e["At + (Resa(u™))u|" A5 + .
= Res(u™) + (Res(u™))|"At + O (At?, Ax?)
apply to the difference scheme (with v, = —Res(u) <= uy = —(Res(u)); ):
uy + Res(u) = (0 — 3)Atuy + O (At?, Az?) = consistent for Az, At — 0

A

accuracy: O (At ,Az?),if © # %
O (A?, Az?),if © =1

stability: von Neumann analysis (approach see exercise 6):

Yl gi®l il

At
n (i+1)®I _ _(i-1)®e1y _ Y HD®L _ 9 i®l | (i-1)®I )
+(1-0)V (_ZA:U (e e ) A7 (e + eV )
nt1 (@ )T _(i—1)®T v i+1)®1 BT | (i—1)®TY ) _
+oyt (QM (DT — im0y — S (DB e - eli) )) —0
with ¢ = aAAt and 0 = ZAQ follows:
G Vel 1 —(1-0)(20(1 — cos(®)) + el sin(P))
CVn 14+0(20(1 — cos(®)) + ¢l sin(P))

stability condition:

(1 —(1—0)20(1 —cos(®)))* + ((1 — O)csin(P))”
(14 ©20(1 — cos(®)))* + (Ocsin(®))? -

— (1-— 2@)\(402(1 —cos(®))? + ¢ sinQ(CD))l do(1 —cos(®)) <0

-~ -~

>0 >0

e ‘GP =

= scheme is unconditionally stable for © > %



analysis for 0 < O < %:
with sin?(®) = 1 — cos?(®) = (1 + cos(®))(1 — cos(P)):

= (1 —20)(c* +40?) + (1 — 20)(c* — 40?) cos(®) — 40, <0
~ —~ ——— ~~
>0 >0 >0
for ¢* — 40% > 0 is cos(®) = 1 the adverse case:
— (1-20)c* <20
for ¢ — 402 < 0 is cos(®) = —1 the adverse case:
1
the outcome of this is the following stability range:
stability range for 0 < © < %
1 T T T 7
instable region
(1-20)0 .
0.5 R T -
stable region
(1-20)0 < 3((1—-20)c)?
0
1 1 1
0 0.5 1 1.5 2
(1-20)c
summary:

From consistency and stability follows convergence (theorem of Lax).
e consistency of the difference approximation is obtained for all parameters
(0,v,a)
e stability is obtained
* 1 <O <1 for all values of (v,a)

* 0<0O < % see diagram

e instability  is obtained for

* 0 <O < 3 for the pure convection equation (v =0 or o = 0)

*0 <0< % and ¢ > 5= for the pure diffusion equation

2(1-20)
(a=0o0rc=0)



(1-20)0
0.5

stability range for 0 < © < %

I I I

instable region

(1—2@)a>§”

stable region -

/
e

7 (1-20)0 < 3((1 —20)c)?

1 1 1

1 1.5
(1-20)c




Computational Fluid Dynamics I

Exercise 8

1. Formulate for the discretised Poisson equation
Uij = Op(Uim1j + Uis1) = Oy(Uijo1 +uijp) = 0% fij,
Ay? Ax?
o= B g At
2(Az? + Ay?) 2(Ax? + Ay?)

(a) the Jacobi-method
(b) the method of GauBi—Seidel point iteration with overrelaxation
(c) the method of GauBi—Seidel line iteration with overrelaxation

Check the stability of these methods with the help of the von Neumann analysis.



Computational Fluid Dynamics I

Exercise 8 (solution)

1. (a) Jacobi-method (v is iteration counter):

1 2
up it =0, (uflyj Fuf ) + Oy (ufy +uyy) + 6%

stability, approach: u}; = Ug,4e;; + Vvelott Bl where Uepaer; is the exact

solution of this equation, therefore

v+1 v+1 Tai+IBj __ v v ITa(i—1)+I8j5 v v, Ta(i+1)+I185
uemact,i,j +V € = @m (uexact,i—l,j + Ve + Ueract,it1,j + V% ) +

Toi+15(5—1 Toa+16(5+1 2
631 (uZwact,i,jfl + Vlje e tIBU-1) + uZxact,i,j+1 + Vl/e oAt 1B )) + 6 fi:j

where for the given definitions of ©, and ©, the terms u and 02 f; ; fulfill

exact,i,j

the original FDE and thus falls out, dividing by V*e!®*17 then yields:

Vu—f—l
G = T O, (e +e') +0, (e +e'P) =2(0, cos () + O, cos (B))

. A2 2
w1th@x:2(Ax2—iAy2),@y:2(Am%—iAy2)and—7r§a§7r, —7T§ﬁ§7r

consider two cases:

2(0, cos () + O, cos (8)) <2(0, +0,) = 2<2Agx2—|—Ay2)):1

(Az? + Ay?

—1

2 (O, cos (@) + Oy cos (6)) 2 2(-0, —©,) = 2 (2_(2; %_—252))

-1<G<1
Thus the Jacobi-method is stable.

(b) Gaufi—Seidel point iteration with overrelaxation
(@ is intermediate value):

~ v+1 v v+1 v _ 2,
Wi — O (“z‘—l,j + “z‘+1,j) - @y (ui,j—l + ui,j+1) =0 fm
v+1

v ~ v
uy it =l w (@ — uy)

or
+1 _ +1 +1 2
wi it =y w (0w ud ) + Oy (Wt +ul ) + 82 fiy —ui)

with w > 0 and the order of calculation ¢ = 1,--- ;im and j = 1,---,jm for
v+1

[T

Z7‘7



stability, approach see above:

v+1 v+1 v+1
v :1+w<@z (V ela—irelo‘) + 0, <V elﬁ—i—eI'B) —1>

Vv Vv
with ¢ = 0, cos (a) + ©, cos (f) and s = O, sin () + O, sin ()

vyt L 14T
s G = =&
| %4 %—c%—[s

, (E—1+40)+s L 2414224+
= |G|" = =+ 2 = T 2., .2 =2
(;_C) +82 o2 wC+C +3

with the condition |G|? < 1:

2 4
=1—-—4—-—0c—2c<0 & w—-2—-2c(w—-2)<0

woow

S (1-20)(w—-2)<0

because of O, + ©, = % the value of ¢ is between —% <c< %, therefore the
expression in the first bracket is 0 < 1 — 2¢ < 2, consider the adverse case
(1 —2¢) =2, then

=>w< 2

Thus the Gau3—Seidel point iteration with overrelaxation is stable for 0 < w < 2.



(c) Gauf3—Seidel line iteration with overrelaxation:

~ ~ ~ +1 2
—O,li—1j + Uiy — Oplizsr; = Oy (ul 1l +ul ;1) + 0% fij

1 ~
uyy =gyt w (g —ugy)
with w > 0 and a line iteration in ¢-direction and the order of calculation j =
1, jm for uy .

stability, approach for uf; see above, @; j = Uegpact + VeloitiBi

= —0,Ve 1V —0,Vel* =0, (Ve 1P 1 yrelh)

& —(1-0, (e’ +e)) =06 (VUJr e 1P+ elﬁ)
Vv T Y Vv
‘7 1 VI/+1
Vo ( v 1) .
- vt (% — 1) (1—20,cos (a)) + O,cos(B) + 10, sin (F)
Ve L1120, cos(a)) — O, cos (B) + 10, sin (B)
NE= (2 =1) (1 -20,cos (@) + O, cos (8))” + ©2 sin? (B)

(L (126, cos(a)) — O, cos (5))2 + ©2sin’* ()

with the condition |G|? < 1 it follows:

- (i _2 + 1) (1 —20,cos (a))* + (2 - 2) (1 -20,cos(a)) O, cos (B)

w? w

5 (1 =20, cos (a ))? — % (1 -20,cos(a)) O, cos (B)

€|>_\

with ¢ = ©, cos (a) + ©, cos (5)

2
:>(——1) 20, cos(a) =1 (1—2¢) <0
< >0

<0

With 20, cos (o) =1 < 0 and 0 < 1 —2¢ < 2, the expression in the first bracket
hastobe%—lZO
Thus the Gauf3—Seidel line iteration with overrelaxation is stable for 0 < w < 2.



Computational Fluid Dynamics I

Exercise 9

1. The Poisson equation
Viu = f(z,y)

is to be solved in general coordinates.

(a) Transform the equation from Cartesian to curvilinear coordinates (z,y) — (£, 7).

(b) Check the results of the general coordinate transformation with the formulation
for polar coordinates (z = rcosf,y = rsinf), where

» _ 1O (0N 10
vio= ror T@r +7’2892

(c) Discretize the transformed equation with central differences and formulate a
point GauB3-Seidel method for the solution. Explain the solution procedure with
red-black ordering.



Computational Fluid Dynamics I

Exercise 9 (solution)

1. (a) The Poisson equation
Viu = f(x,y)

in Cartesian coordinates reads:

Uz + Uyy = f(2,Y)
Transformation into curvilinear coordinates (z,y) — (§,n):

Uy = g + Ny
Upe = (Ug)z = (fxuﬁ + Uwun)x
Exllen + Eaalle + Nallyg + Naly
o (Satige + Matien) + Saatie + N (Euting + Natlyy) + Naxtiy
Euntie + E2Uge + 2EuMtiey + Ny + Nty

yields the Poisson equation in curvilinear coordinates:

52“55"’25907790“577+nzunn+&:xuf+nxwun+§§u£f+2€ynyu€n+n§unn+§yyu£+77yyun = f(ga 77)

=

<§§+§§)u€§+2(gxnx‘i_gyny)uﬁn—f—(77§+7732/)u7m+(§x$+€yy>u§+<nxx+77yy)un = f(€7 77) (*)

(b) From

ror T§U r2 002

and r = £ and € = 7 it follows

9 10 0 1 0° 1 1
Viu = —— +——u:urr+;ur+ﬁuo9

1 1
Viu = Uge + = Ug + 5 Uiy (*%)

Relation between polar and Cartesian coordinates:

xr = £cosn y = Esinn

= E=x2+y? n = arctan 2
x



The partial derivatives of £ and 1 with respect to = and y for the polar coordi-
nates are:

_ x Yy

Lo = = 4
/22 4 42 Na 24y
Y x

YT ety Ty

2

€ = — 2L 2xy
" 2 4 203 Tew = 5 e
(22 +y?) (22 +y?)
72 2xy
gyy = 3 nyy = _($2+ 2)2
(% +y?) Y

Equation (%) must be identical to equation (xx), comparison of coefficients for
Ugg, Ugn, Uny, Ug and u,, yields:

2 2
1=(E+6) = |——— | + J T v T4y
o /12 4 42 /22 + 42 22 4y2 a4y a2+ 2

=1
x Y y x
0=2(&n: +&my) = 2 <— >+ ( >
( yTly) \/m 22+ g2 \/m 22 12
=0
1 y 2 T 2 2 + 92 1
_2:(77326‘1‘77;) = <_2 2>+(2 2>: 2 22 .2 2
r 22 +y 22 +y (@2 +y?)? 22 +y
B 1
 r2c0s26 + r2sin’ 6
1
]
1 v x vty !
== (Cox T &) = 7+ 3 3 = 2 2
r (224922 (224922 (@422 VYY)
1
B Vr2cos? 0 + r2sin’ 6
B 1
o
2xy 2xy
0= (Nex = -
e 1) <x2+y2>2+( <x2+y2>2)

= 0



(c) Discretization of metric terms:

Discretize metric terms with central differences O(Az?, Ay?), using
§e = %ynv fy = —}7%,7, Ny = _%y& Ny = %%5, J = LelYn — Yeln, AL = An =1

in
Yn = Foit 5 Yl I J+1
x. . E— I ._
Ty = SRE DR . I — . .
2 -1, [1,] i+1, ]

Yt — Yi-15
Ye - 9

L1, — Li—1,5 i, -1
v = I Tl j

i,E
How to compute second-order metrics terms, e.g., &, assume we already have
computed all first-order metrics (y,, 2, Ye, T¢):

b = (@;)xz(%yn)x

oD an 0

1 (1 1 /1
— J\g?) I\

Now discretize also second-order metrics:

1[Gy iy — Gu)isy ] 1
f:r:a::_yn[ hdl +L]2A§J i n _jyf

J

Discretization of partial derivatives/PDE:

INE

9*u Uiy — 22U Ui 2
(), = o ma o

Ou Uit1j — Wi—1j 9
- = /= = 1 O(A
(%), 29




With a uniform computational mesh with A¢ = An =1 follows:

Wit1,; — Ui—15

Ug = 9
_ Uig+r — Ui
Uy =
Uge = Uigrj — 2Uij + Ui
Upy = Uiy — 2Uij + Ui
Wik j41 — U141 — Wil j—1 + Ui—1 -1
Uen = 4

This leads to a linear system of equations where the constant coefficients (a, b, ¢, d, e, f, g, h, )
contain the geometrical information from the metric terms, solution with Gauf3-
Seidel:

v+1 v+1 v+1 v+1 v+1
a - uiil,jil _I_ b ° ui’jil + C- ui+1,j71 + d * uiiljj + € - ui’j

v v v . v _
+f- Uipq 5+ G Uiqjp1 T h - U o1 T Uy i = f(z,y)

v+1 v+1 v

v+1 v+1 v+1

Generally, for a solution procedure with red-black ordering the mesh points are
split up into "red” and ”black” points, like a checkerboard:

In the first stage of each iteration step the values at all red points are computed
with a Gauss-Seidel method, taking into account the surrounding black points
but no other red points. In the second stage the values are computed on the
black points, taking into consideration the red points that were computed in
the first stage. This allows for a vectorization of the solution procedure, as
the solution at different points can be computed simultaneously as they are not
recursively dependent on each other, as in a standard Gauss-Seidel method.



However, due to the computational stencil in this problem that uses all eight
surrounding points to compute the solution we have to use a larger seperation,
thus requiring more colors. The ordering for this problem here could look like
this:

Thus we have four different stages in each iteration step. For example, in the first
stage the values on the yellow points could be computed using the information
on the black, red, and green points. In the second stage the values on the green
points are computed using the values on the red, black, and the ones on the
already updated yellow points. This procedures is then performed for all colors
and allows for a vectorization of the given discretization equation.



Computational Fluid Dynamics I

Exercise 9 (appendix)

Transformation (x,y) — (&, n):
0 960 Ind

9x 920t owom
0 _060 o

dy Oy o€ ayan

§o e a%) _ (@)
- (gy ny) (8% B Bﬁz
Inverse transformation (§,7) — (z,y):
0 Odr 9o  0Oyo
o€ ~ o€ 0w " acdy
0 0 00
dn  Ondx  0Ondy

Te Ye z o
- () (1) -(%)
Ty Yn) \oy an

To set equations 1 and 2 equal compute the inverse of equation 2:

—~
—_
~—

—~
[\
~—

ot

Now we can set the matrix in 1 and the matrix in 5 equal, such that

& ) _ 1w —yg>
(fy 7724) J<_$n Te (6)

where the so-called Jacobian J is computed by J = z¢y, — z,y¢. Finally, the conversion of
each term is given by

1 1
§x = jyn fy = _jmn (7)
1 1
e = =5V Ty = FT¢ (8)



Computational Fluid Dynamics I

Exercise 10

1. The Laplace equation . .
V-f=0 , with f = Vu

is to be solved on a curvilinear structured grid.

(a) Transform the equation for f into curvilinear coordinates (z,y) — (£,7) (con-
servative form) and discretize the equation for an equidistant grid in curvilinear
space.

(b) Formulate a discretization based on a finite volume method for the solution of
the equation for f. Reformulate the equation as a surface integral, define a
meaningful control volume and discretize the equation.

(c¢) Show that the formulation obtained with the transformation in cuvilinear coor-
dinates is identical to the finite volume formulation.



Computational Fluid Dynamics I

Exercise 10 (solution)

1. (a)

with

gz = gmgﬁ + N9
hy = &he +nyhy

follows for the terms in the square brackets

gazgé + N Gn + fyhé + nyhn 0 ’ -
nggﬁ + Jna:gn + nghf + Jnyhn = 0
product rule
0 0 0 0 0 0
875 (J&zg + JEHR) + 87] (Jnzg + Jnyh) — g a—g(,]éx) + a7](!]17;,5)] —h [%(Jéy) + %(Jny) =0
with metric terms
_ _ " _ Y% _ e
§e = 7 &y 7 e 7 ="
follows
0 0 0 0
8_§<‘]§1’> + a_n<<]771) +a_§yn - a_nyf =
0 0 0 0
—(J —(J - — 0

final formulation in curvilinear coordinates
[J (&g + EM)e + [T (g + nyh))y = (Yng — 2yh)e + (—yeg + 2¢h)y = 0
discretisation

(yng - xnh>i+%,j - (yng - xnh)i—%,j + (_yfg + m§h>z’,j+% - (_y§9 + xﬁh)i,j—% =0



_ Tp—T4

'E777i+%7.7 An

procedure for the computation (example) for an element

yng = ynul‘ - (ynua})i—&-%,j = (yn)i—&-%,j ’ (59&“{ + nxun)zq_%,j

For this we need the metric terms at the point 7 + %, 7, we can compute these for
example by second-order accurate central differences (other formulations possi-

ble)

_Ys—YAa  YB —Ya
yn,i-ﬁ-%,j - A,’,] - 1

where y4 and yp are the averages of the surrounding 4 grid points

1

ya =7 Wig + Yirrs + Yig-1 + Yir1g-1)
1

Yyp = 1 (Yij + Yit1j + Yij+1 T Yig1,j+1)

The other metric terms, e.g., &.,m,, etc, can also be first transformed to the
inverse metric terms and then be discretized at ¢ + %, 7 in a similar manner.
The terms we and w, can be computed as simple central differences on the
computational mesh, e.g.

Uitl,j — Wiy
Ue - 1=
571+21J 1

(b) finite volume formulation

/V-de:]{f-ﬁdA f= (i) AdA = (_dé/x>
T A

— %gdy—hdx:()
A

Possible discretization with node-centered formulation (for mathematical posi-
tive direction)



J+1

; B
-1 By A o (dy
" h - \—dz
‘l
A
sz‘Jr%,J

<9Ay)i+§,j - (hAx)i+%,j + (gAy)i,jJrl - (hAx)z’,jJrl
+(9Ay)i—%,j - (hAx>i—%,j + (gAy)i,j—% - (hAx)i,j—% =0

where the corresponding signs (+ for flux entering the volume, — for flux leaving
the volume) are contained in the A terms:

A.CEH_%J =1Ip—Ta Ayi+%7j =YB — YA
Az;_1;=zp —C Ay;_1;=Yp — Yo
Axmqr% =Tc —IB Ayi,j+% =%Yc — YB
Axm-_% =TA—Tp Ayi,j—% = YA~ YD

give the surface over which the flux is integrated and the correct sign. The
coordinates at points A,B,C', and D are computed by averages of the surrouding
four grid points, as shown before.

(c) curvilinear form

(yn : g)z’+§,j _(3717 ) h)w%,j _(yn : g)if%,j +(xn ’ h)if%,j
—(ye - g)z’,j—&—% +(ze - h)z‘,j+l +(ve - g)i,j—% —(ze¢ - h)i,j—% =0

finite volume formulation

the metric coefficients, e.g., x,, ye, etc, are then equal to the lengths from the
finite volume approach Az and Ay. For example for surface 7 + %, j we have the
metric terms



Az

_Ip— T4 i+1,j
CE?LH—%J - An - 1
y YB — Ya AyiJr%,j
n77'+27] A/r] 1

The opposite signs in eqs. 1 and 2 are caused by opposite signs in metric terms
in comparison with the lengths, for example

Yo —Yp Yp — Yc
W 9iys = TR Wi = T Wity = A9y

2

as we compute the metric terms going into positive £ and 7 direction, but for the
lengths in the finite volume approach we follow the surface in positive rotation
direction, here counterclockwise.



Computational Fluid Dynamics I

Exercise 11

1. The Laplace equation V2u = 0 is discretized on a Cartesian grid, where the variables
are stored at the cell centers. The discretization is carried out with a finite volume
method, the values on the surface of the cell are reconstructed with the assumption
of a linear function, i.e., applying a first-order Taylor-series expansion around the
surface centroid located at (0, 0):

uw(x,y) = u(0,0)+ uz(0,0)x + uy(0,0)y

= ag+a1x + axy

For the reconstruction on the cell surface the cell centered values of points 1-6, see
Figure, are used.

30|82
Vi
50|~ +6

This yields a overdetermined, 6 x 3 linear equation system

Iz U
@0 1z o %o Uz
A ay = .. . a =
a9 : : a9
I 6 ye Ug

The constants ag, a1, as can be determined by a least-squares approach. Thereby, the
constants are chosen such that the sum of squared errors, ) (ag + a12; + asy; — uz-)Q,
is minimal. This is achieved by solving

ATA ay | = AT



which yields the 3 x 3 system

n > >y ag >y
Z Ly Z %2 Z TilYi ay = Z Uj = T
Z Yi Z TilYi Z yi2 Qg Z Ui~ Yi

Determine the truncation error of the finite volume method.



Computational Fluid Dynamics I

Exercise 11 (solution)

1. From

n > >y ag >y
Z Ty Z %2 Z TilY; : ay = Z Ui - T4
Z Yi Z TilYi Z .%2 Qg Z Ui~ Yi

For an equidistant grid (n = number of points):

6 0 0 ao > U
0 3Az% 0 A o = S u - xy
1
= apg = 6(U1+U2+U3+U4+U5+U6)
2 AI( +uy + ) (ug +uy + )
a = - — (U u Ug — U3 — Ug — U = —U u Ug — Uz — Ug — U
1 SA2 o ‘2L Us = U = Uy = ) = o (U o U UG Uy U Us
1 1
ay = W'Ay(U3+U2—U5—U,6):m(U3+U2—U5—U6)

From u(z,y) = ap + a1z + asy

Compute/< u$> -ndA :
Uy

normal vector 7 for side 1 to 4:

) T | ) o (1 ) L 0 . - (0
side 1: n—( 0) side 2: n—(o) side 3: n—(_l) side 4: n—(l)

/( Ue ) -ndA = —ay(side 1) - Ay + as(side 2) - Ay — ay(side 3) - Az + as(side 4) - Az =0

= (Ugy + uyy) AzAy



Use ug, to evaluate the truncation error (same procedere for w,):
ai(side 2) — aq(side 1)
Ugy =
Az
(side 1) = =
ai(side 1) = ——
! 3Ax

(Wigr + iy + W1 — Uimajp1 = Uimry = Uio1 1)

1

ay(side 2) = ?)A_x<ui+17j+l + Uit1,j F Uit1,j—1 — i1 — Uiy — Uij—1)
= m(ui+l,j+l + Uig1y + Uitr,j-1 — 24541 — 2055 — 2U4 51 +

FUig g+ Uiy + i) (%)

[ ] [ ] [ J
i-1, j+1 i, j+1 i+1, j+1
side 4
A
y 1
®side 10~ @ side 2@

. . X i . .
i-1, j L] i+1,
side 3
[ ] [ ] [ ]
i-1, j-1 i,j-1 i+1,j-1

Taylor series (multidimensional):

fag= 3 Oy g
BY)= stz oyt T W T
s=10
t=0

Here for ;41 j41 (similar for the remaining terms...):

A 2
u(z + Az, y + Ay) = u(x,y) + Az - uy + Ay - uy + AxAy - uyy + °

Ay?
Ty e
Ax?Ay Ay? Az Ax? Ay?
+ 5 *Ugzy B * Ugyy + T “Uggy + T * Uyyy
Ax3Ay A3 Az Ax?Ay?
+ 6 * Ugazy 6 * Uzyyy 1 Uzzyy
Ax? Ayt
_’_ﬂ Ugrre + ﬂ . uyyyy + ...
Inserting Taylor series in (x) yields:
1 Ax?
Uge = 3A 2 (3AQE2 “Ugy + szAyz s Ugryy + T : uxmcx)
A 2

Y Ax?
= Uy + T * Ugzyy + T *Ugzax



= Truncation error for u,,: 7= O(Ax? Ay?)

Similar for u,,, therefore truncation error 7 = O(Az?, Ay?)



