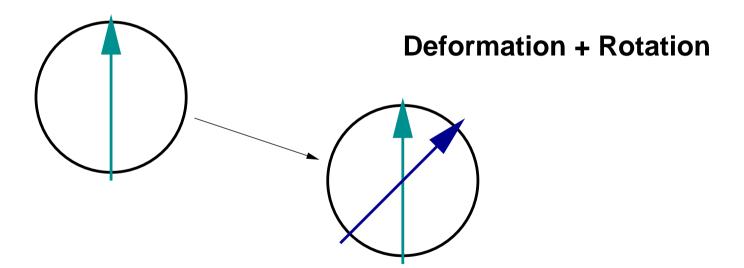


- Usually flowfields are with rotation
- Rotation free flows → Simplification of the Navier-Stokes equations → analytical solution is an approximation of real flow

Fluidteilchen

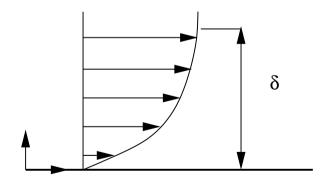


Rotation: Particles rotate around their own axis

Example: Couette flow



- Rotation happens in frictional flows
- films, pipes, boundary layers.



Increase of the velocity

$$u(x, y = 0) = 0$$

$$u(x, y \neq 0) \neq 0$$

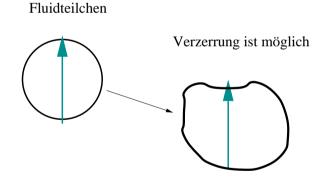
$$\frac{\partial u}{\partial y} \neq 0$$

at small distances to the wall the flow is \approx parallel to the wall $\rightarrow v = 0$

$$\rightarrow \omega = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \neq 0$$

in frictional flows usually $\vec{\omega} \neq 0$

Rotation free (Potential flow)

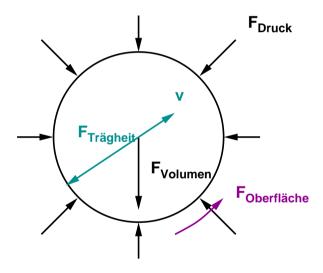


Rotation is usually only the case in frictionless flow fields

Conservation laws for frictionless flows

$$\frac{d\vec{I}}{dt} = \sum \vec{F_a} = \text{pressure and volume forces}$$

Fluid element is a sphere



- Friction forces lead to rotation
- The direction of forces in a frictionless flow is through the center

- in a frictionless flow (without discontinuities) no rotattion can be produced
- if a flow field is rotation free at the beginning it remains rotation free

vortex vektor

$$\vec{\omega} = \frac{1}{2} \operatorname{rot} \vec{v} = \frac{1}{2} (\nabla \times \vec{v}) \text{ with } \vec{v} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

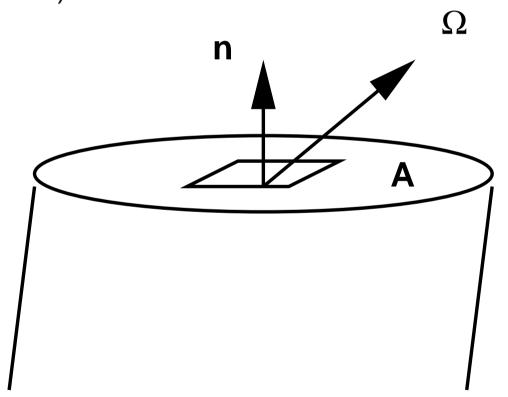
$$\vec{\omega} = \frac{1}{2} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \\ \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \\ \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \end{pmatrix} = \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}$$

plane 2d flow ($w = 0, \frac{\partial}{\partial z} = 0$)

$$\vec{\omega} = \frac{1}{2} \begin{pmatrix} \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \\ \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \\ \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 \\ 0 \\ \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \omega_z \end{pmatrix}$$

vortical flux Ω

Integral of the vortex vector moving through a surface A tretenden Wirbelvektor (analogue to the integral of the velocity vector = volume flux)

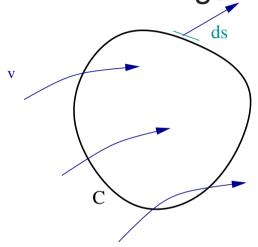


$$\Omega = \int_A \vec{\omega} \cdot \vec{n} \, dA$$

$$\Omega = \int_{A} \vec{\omega} \cdot \vec{n} \, dA$$
$$\dot{Q} = \int_{A} \vec{v} \cdot \vec{n} \, dA$$

Zirkulation Γ

Line integral of the scalar product from velocity \vec{v} and the line element \vec{ds} along a closed curve C.



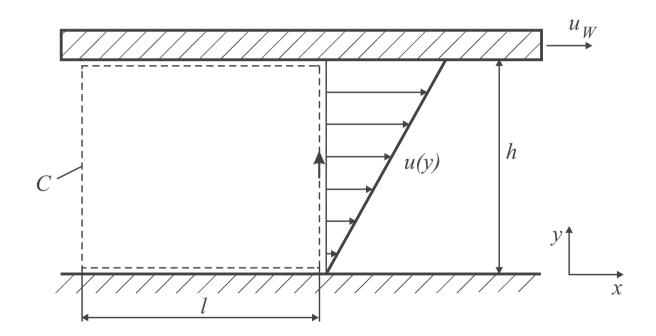
$$\Gamma = \oint_C \vec{v} \cdot d\vec{s}$$

Propositiom of Stokes

$$\Gamma = \oint_C \vec{v} \cdot d\vec{s} = \int_A (\nabla \times \vec{v}) \vec{n} \, dA = \int_A 2(\vec{\omega} \cdot \vec{n}) \, dA = 2\Omega$$

The 2d Couette flow without pressure gradient is analysed. Compute $\vec{\omega},~\Gamma_C,~\Omega$.

Given: u_W, h, l



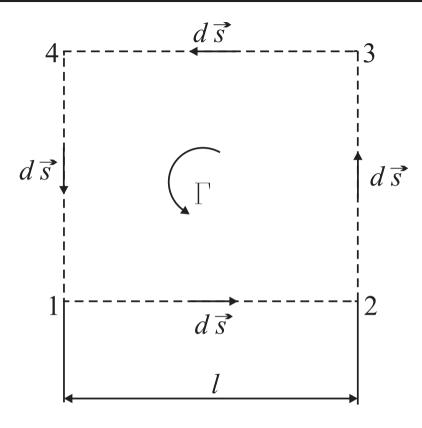
Couette flow ⇒ no pressure gradient

$$\implies u(y) = u_W \frac{y}{h}$$

2d flow

$$\Longrightarrow \vec{\omega} = \begin{pmatrix} 0 \\ 0 \\ \omega_z \end{pmatrix} \qquad \omega_z = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) = -\frac{1}{2} \frac{u_W}{h}$$

$$\implies \vec{\omega} = \begin{pmatrix} 0 \\ 0 \\ -u_W \\ 2h \end{pmatrix}$$



$$\Gamma_C = \oint_C \vec{v} \, d\vec{s} = \int_1^2 \vec{v} \, d\vec{s} + \int_2^3 \vec{v} \, d\vec{s} + \int_3^4 \vec{v} \, d\vec{s} + \int_4^1 \vec{v} \, d\vec{s}$$

$$\Longrightarrow \Gamma = -u_W \cdot l$$

$$\Omega = \int_{\Delta} \vec{\omega} \, \vec{n} \, dA = \omega_z \cdot A = \frac{-u_W}{2h} \cdot l \cdot h = -\frac{1}{2} u_W \cdot l = \frac{1}{2} \Gamma$$

A tornado has the following velocity distribution:

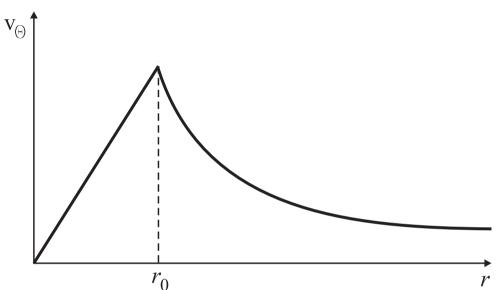
$$v_{\Theta}(r) = \begin{cases} \omega r & r \leq r_0 \\ \frac{\omega r_0^2}{r} & r > r_0 \end{cases}$$

$$v_r = 0$$

$$r_0 = 10 \ m$$
 $\omega = 10 \frac{1}{s}$ $H = 100 \ m$ $\rho = 1,25 \ kg/m^3$

- a) Sketch $v_{\Theta}(r)!$
- b) Determine the circulation on a circle around the center with Ursprung für $r < r_0, r = r_0$ and $r > r_0$!
- c) Proof that the flow is rotation free for $r > r_0$!
- d) What is the kinetic energy in a cylinder with the radius $R=2\ r_0$ and height H?

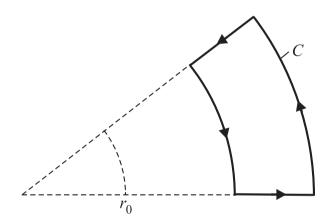
a)



b)
$$\Gamma = \oint_C \vec{v} \cdot d\vec{s} = \int_0^{2\pi} v_{\Theta}(r) \, r \, d\Theta = \begin{cases} 2\pi \, \omega \, r^2 & r \leq r_0 \\ 2\pi \, \omega \, r_0^2 & r > r_0 \end{cases}$$

c)

$$\Gamma = \oint_C \vec{v} \cdot d\vec{s} = 0$$



$$\vec{\omega} = 0$$

d)
$$E = \int_{0}^{2r_0} \frac{\rho}{2} v_{\Theta}^2 H 2\pi r dr =$$

$$\pi \rho H \omega^2 r_0^4 (0, 25 + \ln 2) = 3, 7 \cdot 10^8 Nm$$