Computational Fluid Dynamics I

Exercise 10

1. The Laplace equation . .
V-f=0 , with f = Vu

is to be solved on a curvilinear structured grid.

(a) Transform the equation for f into curvilinear coordinates (z,y) — (£,7) (con-
servative form) and discretize the equation for an equidistant grid in curvilinear
space.

(b) Formulate a discretization based on a finite volume method for the solution of
the equation for f. Reformulate the equation as a surface integral, define a
meaningful control volume and discretize the equation.

(c¢) Show that the formulation obtained with the transformation in cuvilinear coor-
dinates is identical to the finite volume formulation.



Computational Fluid Dynamics I

Exercise 10 (solution)

1. (a)

with

gz = gmgﬁ + N9
hy = &he +nyhy

follows for the terms in the square brackets

gazgé + N Gn + fyhé + nyhn 0 ’ -
nggﬁ + Jna:gn + nghf + Jnyhn = 0
product rule
0 0 0 0 0 0
875 (J&zg + JEHR) + 87] (Jnzg + Jnyh) — g a—g(,]éx) + a7](!]17;,5)] —h [%(Jéy) + %(Jny) =0
with metric terms
_ _ " _ Y% _ e
§e = 7 &y 7 e 7 ="
follows
0 0 0 0
8_§<‘]§1’> + a_n<<]771) +a_§yn - a_nyf =
0 0 0 0
—(J —(J - — 0

final formulation in curvilinear coordinates
[J (&g + EM)e + [T (g + nyh))y = (Yng — 2yh)e + (—yeg + 2¢h)y = 0
discretisation

(yng - xnh>i+%,j - (yng - xnh)i—%,j + (_yfg + m§h>z’,j+% - (_y§9 + xﬁh)i,j—% =0



_ Tp—T4

'E777i+%7.7 An

procedure for the computation (example) for an element

yng = ynul‘ - (ynua})i—&-%,j = (yn)i—&-%,j ’ (59&“{ + nxun)zq_%,j

For this we need the metric terms at the point 7 + %, 7, we can compute these for
example by second-order accurate central differences (other formulations possi-

ble)

_Ys—YAa  YB —Ya
yn,i-ﬁ-%,j - A,’,] - 1

where y4 and yp are the averages of the surrounding 4 grid points

1

ya =7 Wig + Yirrs + Yig-1 + Yir1g-1)
1

Yyp = 1 (Yij + Yit1j + Yij+1 T Yig1,j+1)

The other metric terms, e.g., &.,m,, etc, can also be first transformed to the
inverse metric terms and then be discretized at ¢ + %, 7 in a similar manner.
The terms we and w, can be computed as simple central differences on the
computational mesh, e.g.

Uitl,j — Wiy
Ue - 1=
571+21J 1

(b) finite volume formulation

/V-de:]{f-ﬁdA f= (i) AdA = (_dé/x>
T A

— %gdy—hdx:()
A

Possible discretization with node-centered formulation (for mathematical posi-
tive direction)



J+1

; B
-1 By A o (dy
" h - \—dz
‘l
A
sz‘Jr%,J

<9Ay)i+§,j - (hAx)i+%,j + (gAy)i,jJrl - (hAx)z’,jJrl
+(9Ay)i—%,j - (hAx>i—%,j + (gAy)i,j—% - (hAx)i,j—% =0

where the corresponding signs (+ for flux entering the volume, — for flux leaving
the volume) are contained in the A terms:

A.CEH_%J =1Ip—Ta Ayi+%7j =YB — YA
Az;_1;=zp —C Ay;_1;=Yp — Yo
Axmqr% =Tc —IB Ayi,j+% =%Yc — YB
Axm-_% =TA—Tp Ayi,j—% = YA~ YD

give the surface over which the flux is integrated and the correct sign. The
coordinates at points A,B,C', and D are computed by averages of the surrouding
four grid points, as shown before.

(c) curvilinear form

(yn : g)z’+§,j _(3717 ) h)w%,j _(yn : g)if%,j +(xn ’ h)if%,j
—(ye - g)z’,j—&—% +(ze - h)z‘,j+l +(ve - g)i,j—% —(ze¢ - h)i,j—% =0

finite volume formulation

the metric coefficients, e.g., x,, ye, etc, are then equal to the lengths from the
finite volume approach Az and Ay. For example for surface 7 + %, j we have the
metric terms



Az

_Ip— T4 i+1,j
CE?LH—%J - An - 1
y YB — Ya AyiJr%,j
n77'+27] A/r] 1

The opposite signs in eqs. 1 and 2 are caused by opposite signs in metric terms
in comparison with the lengths, for example

Yo —Yp Yp — Yc
W 9iys = TR Wi = T Wity = A9y

2

as we compute the metric terms going into positive £ and 7 direction, but for the
lengths in the finite volume approach we follow the surface in positive rotation
direction, here counterclockwise.



