
Computational Fluid Dynamics I

Exercise 9

1. The Poisson equation
∇2u = f(x, y)

is to be solved in general coordinates.

(a) Transform the equation from Cartesian to curvilinear coordinates (x, y)→ (ξ, η).

(b) Check the results of the general coordinate transformation with the formulation
for polar coordinates (x = r cos θ, y = r sin θ), where

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
.

(c) Discretize the transformed equation with central differences and formulate a
point Gauß-Seidel method for the solution. Explain the solution procedure with
red-black ordering.



Computational Fluid Dynamics I

Exercise 9 (solution)

1. (a) The Poisson equation
∇2u = f(x, y)

in Cartesian coordinates reads:

uxx + uyy = f(x, y)

Transformation into curvilinear coordinates (x, y)→ (ξ, η):

ux = ξxuξ + ηxuη

uxx = (ux)x = (ξxuξ + ηxuη)x

= ξxuξx + ξxxuξ + ηxuηx + ηxxuη

= ξx(ξxuξξ + ηxuξη) + ξxxuξ + ηx(ξxuηξ + ηxuηη) + ηxxuη

= ξxxuξ + ξ2xuξξ + 2ξxηxuξη + η2xuηη + ηxxuη

yields the Poisson equation in curvilinear coordinates:

ξ2xuξξ+2ξxηxuξη+η
2
xuηη+ξxxuξ+ηxxuη+ξ

2
yuξξ+2ξyηyuξη+η

2
yuηη+ξyyuξ+ηyyuη = f(ξ, η)

⇔

(ξ2x+ξ
2
y)uξξ+2(ξxηx+ξyηy)uξη+(η2x+η

2
y)uηη+(ξxx+ξyy)uξ+(ηxx+ηyy)uη = f(ξ, η) (∗)

(b) From

∇2 u =
1

r

∂

∂r

(
r
∂

∂r
u

)
+

1

r2
∂2

∂θ2
u = urr +

1

r
ur +

1

r2
uθθ

and r = ξ and θ = η it follows

∇2 u = uξξ +
1

r
uξ +

1

r2
uηη (∗∗)

Relation between polar and Cartesian coordinates:

x = ξ cos η y = ξ sin η

⇒ ξ =
√
x2 + y2 η = arctan

y

x



The partial derivatives of ξ and η with respect to x and y for the polar coordi-
nates are:

ξx =
x√

x2 + y2

ξy =
y√

x2 + y2

ηx = − y

x2 + y2

ηy =
x

x2 + y2

ξxx =
y2

(x2 + y2)
3
2

ξyy =
x2

(x2 + y2)
3
2

ηxx =
2xy

(x2 + y2)2

ηyy = − 2xy

(x2 + y2)2

Equation (∗) must be identical to equation (∗∗), comparison of coefficients for
uξξ, uξη, uηη, uξ and uη yields:

1 = (ξ2x + ξ2y) =

(
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2

=
x2

x2 + y2
+

y2

x2 + y2
=
x2 + y2

x2 + y2

= 1

0 = 2(ξxηx + ξyηy) = 2

((
x√

x2 + y2

)(
− y

x2 + y2

)
+

(
y√

x2 + y2

)(
x

x2 + y2

))
= 0

1

r2
= (η2x + η2y) =

(
− y

x2 + y2

)2

+

(
x

x2 + y2

)2

=
x2 + y2

(x2 + y2)2
=

1

x2 + y2

=
1

r2 cos2 θ + r2 sin2 θ

=
1

r2

1

r
= (ξxx + ξyy) =

y2

(x2 + y2)
3
2

+
x2

(x2 + y2)
3
2

=
x2 + y2

(x2 + y2)
3
2

=
1√

(x2 + y2)

=
1√

r2 cos2 θ + r2 sin2 θ

=
1

r

0 = (ηxx + ηyy) =
2xy

(x2 + y2)2
+

(
− 2xy

(x2 + y2)2

)
= 0



(c) Discretization of metric terms:

Discretize metric terms with central differences O(∆x2,∆y2), using
ξx = 1

J
yη, ξy = − 1

J
xη, ηx = − 1

J
yξ, ηy = 1

J
xξ, J = xξyη − yξxη, ∆ξ = ∆η = 1:

yη =
yi,j+1 − yi,j−1

2

xη =
xi,j+1 − xi,j−1

2

yξ =
yi+1,j − yi−1,j

2

xξ =
xi+1,j − xi−1,j

2

η

ξ

i, j i+1, j

i, j−1

i−1, j

j,

i,

i, j+1

How to compute second-order metrics terms, e.g., ξxx, assume we already have
computed all first-order metrics (yη, xη, yξ, xξ):

ξxx = (ξx)x =

(
1

J
yη

)
x

∂

∂x
(ξx) =

∂ξ

∂x

∂

∂ξ
(ξx) +

∂η

∂x

∂

∂η
(ξx)

= ξxξxξ + ηxξxη

=
1

J
yη

(
1

J
yη

)
ξ

− 1

J
yξ

(
1

J
yη

)
η

Now discretize also second-order metrics:

ξxx =
1

J
yη

[(
1
J
yη
)
i+1,j
−
(
1
J
yη
)
i−1,j

2∆ξ

]
− 1

J
yξ

[(
1
J
yη
)
i,j+1
−
(
1
J
yη
)
i,j−1

2∆η

]

Discretization of partial derivatives/PDE:

(
∂u

∂ξ

)
i,j

=
ui+1,j − ui−1,j

2∆ξ
+O(∆ξ)2(

∂2u

∂ξ2

)
i,j

=
ui+1,j − 2ui,j + ui−1,j

∆ξ2
+O(∆ξ)2



With a uniform computational mesh with ∆ξ = ∆η = 1 follows:

uξ =
ui+1,j − ui−1,j

2

uη =
ui,j+1 − ui,j−1

2
uξξ = ui+1,j − 2ui,j + ui−1,j

uηη = ui,j+1 − 2ui,j + ui,j−1

uξη =
ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4

This leads to a linear system of equations where the constant coefficients (a, b, c, d, e, f, g, h, i)
contain the geometrical information from the metric terms, solution with Gauß-
Seidel:

a · uν+1
i−1,j−1 + b · uν+1

i,j−1 + c · uν+1
i+1,j−1 + d · uν+1

i−1,j + e · uν+1
i,j

+f · uνi+1,j + g · uνi−1,j+1 + h · uνi,j+1 + i · uνi+1,j+1 = f(x, y)

ν

ν+1

ν+1

ν

ν+1

ν+1

ν

ν

ν+1
Generally, for a solution procedure with red-black ordering the mesh points are
split up into ”red” and ”black” points, like a checkerboard:

In the first stage of each iteration step the values at all red points are computed
with a Gauss-Seidel method, taking into account the surrounding black points
but no other red points. In the second stage the values are computed on the
black points, taking into consideration the red points that were computed in
the first stage. This allows for a vectorization of the solution procedure, as
the solution at different points can be computed simultaneously as they are not
recursively dependent on each other, as in a standard Gauss-Seidel method.



However, due to the computational stencil in this problem that uses all eight
surrounding points to compute the solution we have to use a larger seperation,
thus requiring more colors. The ordering for this problem here could look like
this:

Thus we have four different stages in each iteration step. For example, in the first
stage the values on the yellow points could be computed using the information
on the black, red, and green points. In the second stage the values on the green
points are computed using the values on the red, black, and the ones on the
already updated yellow points. This procedures is then performed for all colors
and allows for a vectorization of the given discretization equation.
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Exercise 9 (appendix)

Transformation (x, y)→ (ξ, η):

∂

∂x
=
∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η
∂

∂y
=
∂ξ

∂y

∂

∂ξ
+
∂η

∂y

∂

∂η

⇒
(
ξx ηx
ξy ηy

)( ∂
∂ξ
∂
∂η

)
=

(
∂
∂x
∂
∂y

)
(1)

Inverse transformation (ξ, η)→ (x, y):

∂

∂ξ
=
∂x

∂ξ

∂

∂x
+
∂y

∂ξ

∂

∂y
∂

∂η
=
∂x

∂η

∂

∂x
+
∂y

∂η

∂

∂y

⇒
(
xξ yξ
xη yη

)(
∂
∂x
∂
∂y

)
=

( ∂
∂ξ
∂
∂η

)
(2)

To set equations 1 and 2 equal compute the inverse of equation 2:(
xξ yξ
xη yη

)−1( ∂
∂ξ
∂
∂η

)
=

(
∂
∂x
∂
∂y

)
(3)

⇔

(
yη −yξ
−xη xξ

)
∣∣∣∣xξ yξ
xη yη

∣∣∣∣
( ∂
∂ξ
∂
∂η

)
=

(
∂
∂x
∂
∂y

)
(4)

⇔ 1

J

(
yη −yξ
−xη xξ

)( ∂
∂ξ
∂
∂η

)
=

(
∂
∂x
∂
∂y

)
(5)

Now we can set the matrix in 1 and the matrix in 5 equal, such that(
ξx ηx
ξy ηy

)
=

1

J

(
yη −yξ
−xη xξ

)
(6)

where the so-called Jacobian J is computed by J = xξyη − xηyξ. Finally, the conversion of
each term is given by

ξx =
1

J
yη ξy = − 1

J
xη (7)

ηx = − 1

J
yξ ηy =

1

J
xξ (8)


