Computational Fluid Dynamics I

Exercise 9

1. The Poisson equation
Viu = f(z,y)

is to be solved in general coordinates.

(a) Transform the equation from Cartesian to curvilinear coordinates (z,y) — (£, 7).

(b) Check the results of the general coordinate transformation with the formulation
for polar coordinates (z = rcosf,y = rsinf), where

» _ 1O (0N 10
vio= ror T@r +7’2892

(c) Discretize the transformed equation with central differences and formulate a
point GauB3-Seidel method for the solution. Explain the solution procedure with
red-black ordering.



Computational Fluid Dynamics I

Exercise 9 (solution)

1. (a) The Poisson equation
Viu = f(x,y)

in Cartesian coordinates reads:

Uz + Uyy = f(2,Y)
Transformation into curvilinear coordinates (z,y) — (§,n):

Uy = g + Ny
Upe = (Ug)z = (fxuﬁ + Uwun)x
Exllen + Eaalle + Nallyg + Naly
o (Satige + Matien) + Saatie + N (Euting + Natlyy) + Naxtiy
Euntie + E2Uge + 2EuMtiey + Ny + Nty

yields the Poisson equation in curvilinear coordinates:
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=

<§§+§§)u€§+2(gxnx‘i_gyny)uﬁn—f—(77§+7732/)u7m+(§x$+€yy>u§+<nxx+77yy)un = f(€7 77) (*)

(b) From

ror T§U r2 002

and r = £ and € = 7 it follows

9 10 0 1 0° 1 1
Viu = —— +——u:urr+;ur+ﬁuo9

1 1
Viu = Uge + = Ug + 5 Uiy (*%)

Relation between polar and Cartesian coordinates:

xr = £cosn y = Esinn

= E=x2+y? n = arctan 2
x



The partial derivatives of £ and 1 with respect to = and y for the polar coordi-
nates are:
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Equation (%) must be identical to equation (xx), comparison of coefficients for
Ugg, Ugn, Uny, Ug and u,, yields:
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(c) Discretization of metric terms:

Discretize metric terms with central differences O(Az?, Ay?), using
§e = %ynv fy = —}7%,7, Ny = _%y& Ny = %%5, J = LelYn — Yeln, AL = An =1

in
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How to compute second-order metrics terms, e.g., &, assume we already have
computed all first-order metrics (y,, 2, Ye, T¢):

b = (@;)xz(%yn)x
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Now discretize also second-order metrics:
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Discretization of partial derivatives/PDE:
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With a uniform computational mesh with A¢ = An =1 follows:

Wit1,; — Ui—15

Ug = 9
_ Uig+r — Ui
Uy =
Uge = Uigrj — 2Uij + Ui
Upy = Uiy — 2Uij + Ui
Wik j41 — U141 — Wil j—1 + Ui—1 -1
Uen = 4

This leads to a linear system of equations where the constant coefficients (a, b, ¢, d, e, f, g, h, )
contain the geometrical information from the metric terms, solution with Gauf3-
Seidel:

v+1 v+1 v+1 v+1 v+1
a - uiil,jil _I_ b ° ui’jil + C- ui+1,j71 + d * uiiljj + € - ui’j

v v v . v _
+f- Uipq 5+ G Uiqjp1 T h - U o1 T Uy i = f(z,y)

v+1 v+1 v

v+1 v+1 v+1

Generally, for a solution procedure with red-black ordering the mesh points are
split up into "red” and ”black” points, like a checkerboard:

In the first stage of each iteration step the values at all red points are computed
with a Gauss-Seidel method, taking into account the surrounding black points
but no other red points. In the second stage the values are computed on the
black points, taking into consideration the red points that were computed in
the first stage. This allows for a vectorization of the solution procedure, as
the solution at different points can be computed simultaneously as they are not
recursively dependent on each other, as in a standard Gauss-Seidel method.



However, due to the computational stencil in this problem that uses all eight
surrounding points to compute the solution we have to use a larger seperation,
thus requiring more colors. The ordering for this problem here could look like
this:

Thus we have four different stages in each iteration step. For example, in the first
stage the values on the yellow points could be computed using the information
on the black, red, and green points. In the second stage the values on the green
points are computed using the values on the red, black, and the ones on the
already updated yellow points. This procedures is then performed for all colors
and allows for a vectorization of the given discretization equation.



Computational Fluid Dynamics I

Exercise 9 (appendix)

Transformation (x,y) — (&, n):
0 960 Ind

9x 920t owom
0 _060 o

dy Oy o€ ayan

§o e a%) _ (@)
- (gy ny) (8% B Bﬁz
Inverse transformation (§,7) — (z,y):
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To set equations 1 and 2 equal compute the inverse of equation 2:
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Now we can set the matrix in 1 and the matrix in 5 equal, such that

& ) _ 1w —yg>
(fy 7724) J<_$n Te (6)

where the so-called Jacobian J is computed by J = z¢y, — z,y¢. Finally, the conversion of
each term is given by

1 1
§x = jyn fy = _jmn (7)
1 1
e = =5V Ty = FT¢ (8)



