
Computational Fluid Dynamics I

Exercise 5

1. The heat conduction equation is given:

Tt = αTxx, α = const. > 0

The equation is discretised with a 3-time level scheme (Dufort-Frankel scheme):

L∆(T ) =
T n+1
i − T n−1

i

2∆t
− α

T n
i+1 − (T n+1

i + T n−1
i ) + T n

i−1

∆x2
= 0

Check the consistency of this scheme.

2. Discretise the above equation with an explicit scheme. Check the stability of this
scheme with

(a) the discrete perturbation theory.

(b) the help of a periodical test function,

T (x, t) = V (t) cos(kx) resp. T n
i = V n cos(Θi)

with t = n∆t, x = i∆x, Θ = k∆x, by analysing, whether the amplitude V (t) is
in- or decreasing with the time level.

advice: cos(α± β) = cosα cosβ ∓ sinα sinβ



Computational Fluid Dynamics I

Exercise 5 (solution)

1. We are given a finite difference equation without the truncation error, it can be
determined by developing Taylor series for time level “n” and location “i”

T n±1 = T n ± T n
t ∆t+ T n
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6
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2∆t
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T n+1 + T n−1 = 2T n + 2T n
tt
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2
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apply in L∆(T ) :

Tt
n
i + Tttt

n
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6
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i+1 − 2T n
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−Tttni
∆t2
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)
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The truncation error of the spatial discretization Txxi + Txxxxi
∆x2

12
+ . . . can be ei-

ther determined by knowledge (second-order accurate approximation of second-order
derivative, see script pp. 3-3) or also via spatial Taylor series expansions. Finally,
the original PDE (left hand side) and the truncation error (right hand side) is

recovered =⇒ (Tt − αTxx)ni = −Tttt
∆t2

6
+ αTxxxx

∆x2

12
− αTtt

∆t2

∆x2
+ tho︸ ︷︷ ︸
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which together is the modified PDE.

consistency:

lim
∆x,∆t→0

τ = 0 ? only fulfilled, if lim
∆x,∆t→0

∆t2

∆x2
= 0

i.e. ∆t has to vanish faster than ∆x

• for finite ∆x, ∆t choose: ∆t
∆x
� 1, e.g. ∆t

∆x
= O(∆x)

• irrelevant for steady solution, since in this case Tt = Ttt = . . . = 0



2. discretisation:

δtT =
T n+1
i − T n

i

∆t
δxxT =

T n
i+1 − 2T n

i + T n
i−1

∆x2

explicit scheme:

T n+1
i = T n

i + σ
(
T n
i+1 − 2T n

i + T n
i−1

)
with σ =

α∆t

∆x2

(a) Discrete perturbation theory: For linear equations a perturbation ε (error)
satisfies the same difference equation as the solution, therefore

εn+1
i = σεni−1 + (1− 2σ)εni + σεni+1 mit σ = ν

∆t

∆x2
(*)

The analysis of the error behaviour yields the following results:

• Initial condition n = 0
ε0
i = ε für i = is ε0

i = 0 für i 6= is

ε

1

is− 2 is− 1 is is+ 1 is+ 2
i

• Time step n = 1 compute solution of equation * with values from n = 0:

ε1
is = σε0

is−1 + (1− 2σ)ε0
is + σε0

is+1 = (1− 2σ)ε

ε1
is+1 = σε0

is + (1− 2σ)ε0
is+1 + σε0

is+2 = σε

ε1
is−1 = σε0

is−2 + (1− 2σ)ε0
is−1 + σε0

is = σε

solution at all other points i < is− 1 and i > is+ 1 is zero.

from
max| ε1 |
max| ε0 | ≤ 1 folgt |σ | ≤ 1 bzw. | 1 − 2σ | ≤ 1

→ 0 < σ ≤ 1

Repeat procedure for following time steps (see script, p. 3-8ff), for n → ∞ the
asymptotical stability limit is 0 < σ ≤ 1/2.



(a) von Neumann stability analysis:

A periodic error function

T n
i,j = V n · eIkxx

= V n · eIkxi∆x

= V n · eIΘi

is applied to the original PDE

T n+1
i = T n

i + σ
(
T n
i+1 − 2T n

i + T n
i−1

)
such that

V n+1eIΘi = V neIΘi + σ
(
V neIΘ(i+1) − 2V neIΘi + V neIΘ(i−1)

)
divide by V neIΘi

V n+1

V n
= 1 + σ

(
eIΘ − 2 + e−IΘ

)
use e±IΘ = cos(Θ)± I sin(Θ) and G = V n+1

V n

G = 1 + σ (cos(Θ) + I sin(Θ)− 2 + cos(Θ)− I sin(Θ))

G = 1− 2σ (1− cos(Θ))

stable, if |G| ≤ 1 → −1 ≤ G ≤ 1 for − π ≤ Θ ≤ π

=⇒ σ ≤ 1

2
resp. ∆t ≤ ∆x2

2α


