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Fluid Mechanics

• Fluid Mechanics is concerned with the behavior of fluids at rest and in motion

• A Fluid can be defined as a substance which can deform continuously when being 
subjected to shear stress at any magnitude.

• In other words, it can flow continuously as a result of shearing action. This 
includes any liquid or gas.

• A gas is a fluid that is easily compressed. It fills any vessel in which it is contained.

• A liquid is a fluid which is hard to compress. A given mass of liquid will occupy a 
fixed volume, irrespective of the size of the container.

• If a fluid is at rest, we know that the forces on it are in balance.
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Fluid Mechanics

Hydrostatics,  aerostatics Aerodynamics, hydrodynamics

Compressible fluids

Gases, density ρ depends on p,T:  ρ = ρ(p,T)

Incompressible fluids

Liquids, density ρ is constant

Newtonian fluids

Viscosity η is constant

Non-Newtonian fluids

Viscosity η depends on du/dy
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Fluid Mechanics

Newtonian fluids:
Water, air, oil

Bingham plastic:
tooth paste, mayonnaise

Dilatant fluids:
corn starch

Pseudoplastic fluids:
lava, ketchup,
whipped cream



• Quantities concerning the fluid

 Density of the fluid

 Dynamic Viscosity

 Kinematic Viscosity

 Specific heat capacity

 Velocity field

 Static pressure

 Temperature

 Shear stress tensor

• Quantities concerning the flow

Rank 0: scalar Rank 1: vektors Rank 2: dyadic

• Tensors
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Vectors, tensors, calculation rules I

 Rank 0: scalar Rank 1: vector Rank 2: dyadic

• Tensors

• Scalar – vector  vector

• Vector – vector  scalar (scalar product, dot product)
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• Vector – vector  vector (curl, cross product)

• Vector – vector  dyadic/second rank tensor

• Vector – dyadic  vector

Vectors, tensors, calculation rules II
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Operators I

• Differential operators (in cartesian coordinates)
 Nabla operator

 Laplacian operator

• Differential operations using the Nabla operator

 Nabla operator – scalar  gradient

 Nabla operator – vector  divergence
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Operators II

• Second derivatives

 Nabla operator – vector  curl (cross product)

• Differential operations using the Laplacian operator

 Divergence of gradient

 Divergence of curl

 Curl of curl
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Derivatives
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• Total derivative of a function

• The total derivative describes the increase of a function

 Total derivative

 Substantial derivative
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Basic equations
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• Continuity equation

• Navier-Stokes equations

• Energy equation

• fluid-mechanical properties

 Density of a fluid

 Dynamic viscosity

 Kinematic viscosity

 Specific heat capacity

 Velocity field

 Static pressure

 Temperature

 Stress tensor
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Simplifications for certain flow types
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• Steady flow

• Incompressible flow

• Symmetrical flow

• frictionless flow (λ: heat conductivity)

• 2-Dimensional flow (reduced number of equations)
(reduced number of derivatives)

• fully developed flow



• Basic quantities

 Volume flux

 Mass flux

 Momentum

 Kinetic energy

• Simplified equations

 Continuity

 Momentum

 Energy

Basic quantities
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Streamlines and pathlines
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• Streamlines and pathlines

• Steady and unsteady flow
 Steady state flow: A flow is said to be in steady state if the flow field is only a function of 

position (x, y, z) but not of time t: 

Examples: airplane at constant speed, pipe flow, most technical applications if the boundary 
conditions are independent of time or the changes in time are very slow (quasi-steady)

 Unsteady flow: if the flow field is both a function of position (x, y, z) and time t, the flow is
said to be unsteady:

Examples: start-up procedures, flow in internal combustion engines, bird flight, beating heart,...

streamline

streamline
streamtube

pathline
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Streamlies and pathlines
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• Motionless environment, constant velocity u of the object
• Unsteady flow for observer looking at the moving object
• Steady flow for observer moving with the object

• Eulerian approach: analysis is performed by defining a control volume to represent 
a fluid domain which allows the fluid to flow across the volume. This approach is 
more suitable to be used in fluid mechanics.

• Lagrangian approach: analysis is performed by tracking down all motion parameters 
and deformation of a domain or particle as it moves. This approach is widely used 
for particle and solid mechanics.

• Streamlines: curves that are
instantaneously tangent to the 
velocity 

• Pathlines: trajectories that 
individual fluid particles follow
 In steady flow, the 
streamlines and pathlines
coincide

•Unsteady flow:
pathline ≠ streamline

• Steady flow:
pathline = streamline
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Example I: task
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• A piston is moving in a tube of infinite length and with constant cross section A with
the velocity vpiston(t). The density of the fluid is constant. 

• Determine the substantial acceleration in the tube.
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Example I: solution
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• Substantial derivative

• Convective acceleration: continuity

and  

• local acceleration

• Hence: 

 only local acceleration
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Example II: task
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• A fluid of constant density flows into a diffuser with the constant velocity v = v0.
The cross section of the diffuser is A(x).

• Determine the substantial acceleration of the fluid along the axis x.
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Example II: solution
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• Substantial derivate:

• Constant inflow velocity:

• Continuity and 1st derivative:

• Hence: 
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Example III: task
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• An incompressible fluid with the viscosity η is flowing laminar and steady between
two parallel plates. The flow is radial from inside to outside.

• Simplify the equations for the flow problem described above.

• The differential equations in cylindrical coordinates are:
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Beispielaufgabe III: solution
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• Continuity

• Radial momentum equation, left side

• Radial momentum equation, right side
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Example IV: task
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• The Navier-Stokes equations for unsteady, incompressible flows in a graviational
field read:

• Formulate the equations for a steady, frictionless, two-dimensional flow in a
cartesian coordinate system (x,y).
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Example IV: solution
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• Continuity:

• Momentum equation, η=0 (frictionless)



• Momentum equation, y-direction

• Momentum equation, x-direction



Example V: task

• The continuity equation and the Navier-Stokes equations for two-dimensional flows
read:

• The equations are to be simplified for:
 Steady flows,

 Steady and incompressible flows, 

 Steady and incompressible flows with constant viscosity

 Steady, incompressible, and frictionless flows.
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Example V: solution
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• Continuity:

 Steady flow:



 Steady and incompressible flow:

 Steady and incompressible flow with constant viscosity (also η = 0 / frictionless):
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Example V: solution
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• Momentum equation:

 Steady flow:

 Steady and incompressible flow:

Left side:
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Example V: solution
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 Steady and incompressible flow:

Left side (cont‘d)

Right side:
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Example V: solution
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 Steady and incompressible flow:

 Steady and incompressible flow with constant viscosity (η = const.):

Left side: (no changes)

Right side:
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Example V: solution
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 Steady and incompressible flow with constant viscosity (η = const.):

 Steady, incompressible and frictionless flow (η=0):



1

Biological & Medical Fluid Mechanics
02: Hydrostatics

Michael Klaas
Institute of Aerodynamics
RWTH Aachen University

D-52062 Aachen
http://www.aia.rwth-aachen.de



Definitions

 Fluids at rest are in stable equilibrium, the sum of all external forces equals zero
 Fluid elements are not moving or are moving with constant velocity
 Only normal stresses, no shear stresses
 Normal stresses are pressures (no internal molecular forces), the pressure on a 

fluid at rest is isotropic

• Hydrostatics: mechanics of fluids in static equilibrium / fluids at rest

• Fluids: materials that are deformed due to shear stress 
 A fluid starts to move if a shear stress is applied
 No shear stress in a fluid at rest

• Hydrostatics: 



Basic hydrostatic equation

 All quantities (pressure p, density ρ,…)
are functions of the coordinate z:
p(z), ρ(z),…

• Derivation of the basic hydrostatic equation:

 Force balance equation for a differential 
cube (Eulerian cube)



Basic hydrostatic equation

 Taylor series of p and ρ:

• Derivation of the basic hydrostatic equation:

 Hence:

 Integration for incompressible fluids in a constant gravitational field: 



Basic hydrostatic equation

• Submerged objects that are either partly or completely below a free surface
(liquid-gas interface) or within a completely full vessel experience a force that
is equal to the weight of the fluid displaced by the object  buoyancy.

• Parallelepiped in a fluid with the density ρF

• Force Fp in z-direction:

• Hydrostatic pressure:



Stevin's principle

• The force on an arbitrary area A in the fluid corresponds to weight of the fluid
column above the area and the outer pressure multiplied with the projected area.

• Force on an object with the volume V 



Basic hydrostatic equation

 Assumption: perfect gas:

 Isothermal atmosphere:

 Hence:

 Integration:

• Integration for compressible fluids

Barometric formula



Balloon in atmosphere

 Perfect gas:

 Barometric formula:

 Typical values:

 Change of the density across the height of the balloon:

 The change of the density across the height of the balloon is negligible 

• Atmosphere: perfect gas, density ρ depens on height z



Balloon in atmosphere

 Rigid & open (hot-air balloon)
 Open  pressure balance inside/outside
 Rigid  constant volume
 Open  loss of mass

 Perfectely loose & closed (weather balloon)
 Perfectely loose  no forces across envelope
 Closed  no loss of mass
 Perfectely loose  volume change

 Rigid & closed (Zeppelin)
 Closed  no pressure balance inside/outside
 Closed  no loss of mass
 Rigid  constant volume

• Different types of balloons



Example I: task

• A container is filled with a fluid of the density ρ. The drain of the container, filled up
to a height h, is closed with a hollow hemisphere (radius R, weight G).

• Given: h, ρ, R, G, g

• Determine the necessary force F to open the drain.

• Hint: volume of a sphere:

drain



Example I: solution

• Force balance equation: 

• The hemisphere is not fully covered with fluid:



Example II: task

• The sketched weir of length L seperates two basins of different depth.

• Given: ρ, g, L, a, pa

• Determine the force of the water on the weir.



Example II: solution

• Surfaces:

• Surface 1: 
 Force on surface 1:

 Coordinate transformation:

 Forces in x- and z-direction:   



Example II: solution

• Surface 1: 
 Force on surface 1 with :

• Surface 2: 

• Surface 3: 



Example II: solution

• Surfaces 4-5-6: 

• Sum of all forces: 



Example III: task

• A rigid, closed balloon has a mass of mN (including payload) and is filled with gas
(mass mG, Volume V, and pressure pi). The volume VN of the payload is negligible.
The temperature of the gas (gas constant RG) equals the temperature of the
isothermal atmosphere (gas constant RL, temperature T0).

• Given: g, V, VN << V, mG, mN, ρ0, Ti = T = T0 = const., RL, RG

pi

V mG

pa

ρ0

mN

g

z

• Determine the ceiling zmax,1 of the balloon if the ballon must be tied to the ground
at sea level (z=0).

• When the balloon has reached the ceiling, a hole is punched in the bottom of the
envelope. Will the balloon rise or sink?

• Determine the new ceiling zmax,2 for pi > pa(zmax,1)



Example III: solution

• Ceiling

 Balance of forces, maximum height:
 Lift:
 Total weight:
 Hence:

 Barometric formula for a compressible fluid, isothermal atmosphere:

 Thus:

 Finally:   



Example III: solution

• Will the balloon rise or sink?

 Case 1: pi > pa  mG decreases  zmax increases
 Case 2: pi < pa  zmax decreases

• Ceiling zmax,2 for pi > pa(zmax,1), i.e., case 1:

 The balloon rises and gas escapes from the balloon until a new equillibrium
(pressure balance) is reached at zmax,2. 

 Balance of forces:
 Lift: 
 Weight of the remaining gas:

 Hence:



Example IV: task

• A weather balloon with the mass m and the initial volume V0 ascends in an
isothermal atmosphere. Its envelope is loose until the balloon reaches the maximal
volume V1.

• What is the necessary force to hold down the balloon before launch?
• At which altitude will the balloon reach its maximum volume V1?
• Determine the ceiling of the balloon.

• Given: p0 = 105 N/m2, ρ0 = 1,27 kg/m3, m = 2,5 kg, V0 = 2,8 m3, V1 = 10 m3,
R = 287 Nm/kgK, g = 10 m/s2



Example IV: solution

• Before start:
V0

FA FG

FH FN

z

• Altitude z1 for maximum Volume V1:

 Envelope is perfectely loose and closed for V < V1 
 no loss of mass, volume change



Example IV: solution

 The ballon rises very slowly:
 Isothermal atmosphere  barometric formula

 Volume as function of heigt:

V1

V0

V

z1 z



Example IV: solution

• Ceiling:
 z < z1: with pL = pG and TL = TG

 The lift force on a perfectly loose, closed balloon is constant.

 z > z1: V=V1=const.

 Ceiling: FA

z1

z

zmax
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Continuity equation

• Continuity equation = conservation of mass/conservation of volume flux:

• Conservation of mass/mass flux:

• Conservation of volume flux for an incompressible fluid:



Continuity equation

 Pipe flow:
• Examples:

 Water Jet:

• The one-dimensional continuity equation contains an average value of the
velocity. In reality, v is not constant due to friction, vortices,… 

Reality: One-dimensional continuity equation:

Constant mass flux: 



Bernoulli equation: derivation

 2nd Newtonian law: Mass × acceleration = sum of outer forces

• Derivation of the Bernoulli equation:

 Equation of motion for an infinitesimal element along a streamline: 

 Velocity along a streamline:

Total
acceleration

Local
acceleration

Convective
acceleration



Bernoulli equation

• Pipe flow • Diffuser

• Only local acceleration • Only convective acceleration

• Simplifications:
 Incompressible fluid:
 Frictionless flow:
 Steady flow:
 Constant gravity: 



Different types of pressure

• Static pressure • Dynamic pressure (Prandtl tube)

• Potential pressure • Total pressure (Pitot tube)

Constant height (∆h=0):

Kinetic energy is 
converted when the flow 
is decelerated to v=0



Example 1: Task

• Water flows from a large pressurized tank into the open air. The pressure
difference ∆p is measured between A1 and A2

• Given: 

• Compute the velocities v1, v2, and v3

• Determine the pressures p1, p2, and p3 and the pressure pB above the surface.



Example 1: solution

• Pressurized tank with well rounded inlet and sharp outlet:

• Sketch of the total energy along a streamline: 

Well rounded inlet sharp edged exit

 Bernoulli

• Venturi nozzle: a Venturi nozzle is used 
to measure mass- and volume fluxes:

 Measurement of ∆p
 Computation of v2

 Computation of mass- and volume 
flux 



Example 1: solution

• Continuity equation:

• Determination of the velocities v1, v2, and v3:

 Pressure difference:

 Bernoulli equation 1  2: 

 Hence:

 Finally: 



Example 1: Task

• Determination of the pressures p1, p2, and p3 and the pressure pB above the surface.

 The pressure p0 represents the energy that can be converted into kinetic energy:

 If we know one pressure, we can compute the other values by using
Bernoulli’s equation

 Determination of the pressure p3 in the exit cross section
 Equation of motion in x-direction for a moving control

volume dAdx (includes always the same particles)



Example 1: Task

 Assumption: parallel streamlines at the sharp edged exit

 Velocity:

 Boundary condition:

  The pressure in the exit cross-section is function of y

 Flow into air: 

 Neglect the potential energy:

 Bernoulli 0  3:

 Open tank: pB=pa  (Theorem of Torricelli) 
(15.10.1608 - 25.10.1647)
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Definition

• Momentum equation = vector equation of motion for a continuum 

• Steady flow:

• Pressure force:

• Volume force (incompressible flow, acceleration parallel to coordinate direction):

• Friction force: 



Definition

• External forces (fittings, supporting forces, casings,…)

• Skalar product : 
Mass that flows normal to the surface of the control volume and that crosses 
the boundary of the control surface

 Incoming mass has a negative sign, outflowing mass has a positive sign

control surface

positive sign negative sign



Signs

 Velocities & forces:

• To compute the momentum in x- and y-direction, the corresponding velocity 
component is used. The sign of the velocity depends on the coordinate system.

 Momentum equation in x-direction

 Momentum equation in y-direction



Procedure/criterions

• Sketch the flow and define the coordinate system

• Choose the control surface such that

• the integrands in the different directions are known or
• the integrands are zero (symmetry plane)
• the geometry of the control surface is simple
• the fitting forces are included (or not)
• if necessary use a moving control surface
• Do not cut through walls

• Determine the integrals for the specific problem

• Important: 

• For special problems Bernoulli and Momentum equation are necessary
• If Bernoulli is valid, the momentum equations is also valid
• Don’t forget the continuity equation

• Rule of thumb: 
• Well rounded inlet  Bernoulli  /  Sharp edged inlet  Momentum
• Sharp edged exit  Bernoulli 
• Losses (separation, mixing, ...)  Momentum
• Power  Momentum
• Outer forces  Momentum



Rankine‘s theory of jets

• Flow through a propeller

• Propeller, windmills, ship’s screws

• 1-dimensional flow

• No influence of the rotation

• Distribution of force is constant 
across the cross section

• Acceleration or deceleration



Rankine‘s theory of jets

• Maximum power • Maximum thrust:

• Theorem of Froude:

• Momentum equation, green control volume:

• Power:

• Continuity equation:

• Momentum equation, red control volume:

• Bernoulli equation:



Rankine‘s theory of jets

• Different forms of propellers

 Propeller without housing

 Propeller with housing, sharp 
edged inlet

 Propeller with housing, well
rounded inlet

 Pipe with nozzle

Separation

Momentum

Momentum

MomentumSeparation



Example 1: task

• A water jet flowing into positive x-direction is reflected by a blade. The flow is
2-dimensional, frictionless and symmetrical. 

• Given: v1, ρ, B1

• Determine the force Fs on the blade

• for a fixed blade

• for a blade that moves in positive x-direction with the constant velocity vstat



Example 1: solution

 Bernoulli equation:

 Continuity:

 Momentum equation in x-direction:

• a) fixed blade:



Example 1: solution

 Bernoulli equation/continuity/symmetry:

 Momentum equation in the absolute/relative system

• b) moving blade:

Velocity Mass flux



Example 1: solution

 Momentum equation in the absolute/relative system

• b) Moving control surface



Example 2: task

• Given: v1, v2, α, ρ=const., A3 , ¼ A = A3

• Given: Determine the pressure difference  ∆p = p2 − p1 in the plotted bifurcation
by neglecting the friction.



Example 2: solution

 Momentum equation in x-direction:

• Alternative 1: control surface

 Pressure force:

 Continuity:



Example 2: solution

 Momentum equation in x-direction:

• Alternative 2: control surface

 Pressure force:

unknown cannot be computed



Example 3: task

• Given: ρ=const., A , AD, h, g

• Water is flowing steadily from a large container into the open air. The inlet is well 
rounded. The exit possesses the shape of a nozzle.

• Determine the fitting force
a) for the standard configuration
b) without inlet and nozzle 



Example 3: solution

• Mass flux:

b) Borda estuary
Losses  no Bernoulli equation 
Momentum equation

a) well rounded inlet and nozzle:
no losses  Bernoulli equation



Example 3: solution

• Forces:

• Borda estuary:• Well rounded inlet and nozzle:



Example 4: task

• Given: ρ=const., A , ∆p

• Two fans sucking air from the surrounding differ in their inlets. The flow is 
incompressible.

• Compute
a) the volume flux,
b) the power of the fans, and
c) the force on the fitting.



Example 4: solution

• Basic situation: Total pressure, static pressure, and dynamic pressure

Separation

• Well rounded inlet: • Sharp edged inlet:



Example 4: solution

• Well rounded inlet:

• Bernoulli equation 2  3:

• Bernoulli equation -∞  1:

• Volume flux:



Example 4: solution

• Well rounded inlet:

• Here:

• Power:



Example 4: solution

• Well rounded inlet:

• Flow field can be described using a 
point sink

• No direction at infinity

• The velocity is constant

• Fitting force:



Example 4: solution

• Well rounded inlet: • Momentum flux for A∞:



Example 4: solution

• Well rounded inlet: • Exit:



Example 4: solution

• Sharp edged inlet:

• Momentum equation:

Separation



Example 4: solution

• Sharp edged inlet:
• Power:

• Fitting force:

Separation
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Motivation

• Initial situation

• Exact analytical solution of the conservation equations is usually not possible

⇒ Experimental and numerical investigations are necessary

• Fundamental questions:

• When can experimental results be transferred to the realistic conditions?

• How can we design an experiment as general as possible?

• How can we reduce the complexity of the problem?

 Similarity theory: Find a set of dimensionless similarity parameters that    
describe the problem
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Example: pipeline problem

• Experimental investigation of the pressure loss for the steady, incompressible flow of 
a Newtonian fluid through a long horizontal tube with circular cross section

 Find a relation for ∆pl that describes its dependence on the variables of the flow

• Approach 1: Several experiments with modifications in one variable

 expensive, difficult, results not necessarily transferable to other pipelines with 
different flow conditions

3



Example: pipeline problem

• Approach 2: Combine (D, ρ, η, v) to dimensionless parameters
(similarity parameters):

4



Definition

• Theory of similarity:

• Comparison of experimental results with real configurations

• Reduction of the number of physical quantities
→ reduction of the number of experiments

• Experimental results are independent of the scale

• Similarity parameters are dimensionless

• Dynamic similarity: flows are not necessarily similar, if only the flow quantities
are scaled

• Two flow fields are similar if they are geometrically and dynamically similar

• Flow in a gap:

= parameter of the geometry

5



Similarity numbers
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• Geometrical similarity 

 scale

 Transfer from reality to model

• Euler number: Similarity concerning pressure

 pressure force / inertia

• Reynolds number: Similarity concerning viscous stresses

 inertia /viscous forces

-  creeping flow

-  gap flow

-  frictionless

Due to the kinematic viscosity, the Reynolds number depends on the temperature
and (for gas flow) on the pressure.



Similarity numbers
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• Froude number: shallow water waves / free surfaces / ship hydrodynamics

 inertia / gravitational force

The Froude number is used to determine the resistance of a partially submerged
object moving through water

• Strouhal number: ratio between characteristic times

• Mach number: flow velocity / speed of sound

 incompressible flow

 subsonic

 supersonic compressible flow

 hypersonic
}



Similarity numbers
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• Prandtl number: viscous diffusion rate / thermal diffusion rate

 kin. viscosity /  thermal diffusivity
(cp= specific heat)
(λ = thermal conductivity)
(a = thermal diffusivity)

• Weber number: multiphase flows

 inertia / surface tension/energy

• Nusselt number: heat transfer at a boundary (surface) within a fluid

 convective/conductive heat transfer
(λf = thermal conductivity)
(α =  convective heat transfer coefficient)

• Archimedes number: motion of fluids due to density differences
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Methods to determine dimensionless 
parameters: Buckingham‘s Π-Theorem

• Method of dimensional analysis (Buckingham’s Π−Theorem)

• The P-Theorem determines the maximum number of parameters to be considered

• Number of physical quantities: k 

• Number of basic dimensions: r [m], [s], [kg], [K]

• Number of dimensionless parameters: m= k – r

• Procedure

• Determine the number of physical quantitites k

• Decompose and determine the number of basic dimensions r

• Determine m

• Choose r recurring variables 

• Include all basic dimensions
• Linearly independent
• Don’t choose the variables that are hard to measure

• Determine the dimensionless parameters

• Check the dimensions

• Formulate
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Methods to determine dimensionless 
parameters: differential equations

• Starting point: differential equation that describes a physical (fluid mechanical)
problem

• Determination of the similarity numbers:

• Differential equation that describes the
• Problem:

• Introduce of dimensionless
quantities and reference quantities:

• Replace the variables in the
differential equation:

• Divide the complete equation by one
of the coefficients of the

• terms:

• m terms  m-1 similarity numbers
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Methods to determine dimensionless 
parameters

• Buckingham’s Theorem yields the maximum number of similarity numbers for a 
given set of influence parameters.

• Differential equations contain additional information about the relationship between 
the influence parameters and the similarity numbers →The number of similarity 
numbers derived from Buckingham‘s Π-Theorem can be larger than the number 
derived from the differential equation.

• Usually, similarity numbers determined using one of these methods can be written 
as a combination of known similarity numbers

• Example:



Example 1

• The wake of a long cylinder with the diameter D is analyzed experimentally in a 
wind tunnel. Under certain conditions, a periodic vortex configuration is generated, 
the Kármán vortex street. 

• Determine the dimensionless parameters of the problem

• How many variations of parameters are necessary in this investigation to measure 
the frequency of the vortex street?
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Example 1

• Physical quantities

• Freestream velocity

• Kinematic viscosity

• Density

• Diameter of the cylinder

• Frequency

• Number of similarity numbers:

• Number of physical quantities: k = 5

• Number of basic dimensions (m, s, kg): r = 3

• Number of dimensionless parameters: m = k – r = 2
13



Example 1

• Recurring variables:

• Freestream velocity

• Density

• Diameter of the cylinder 

• All dimensions are included, all variables are linearly independent

• Determination of the similarity numbers:

• 1st number

• 2nd number: 

14



Example 1

• 1st similarity number

• Dimensional analysis:

• Comparison of the exponents:

• Hence:

• The first similarity number of this problem is the Strouhal number 

15



Example 1

16

• 2nd similarity number

• Dimensional analysis:

• Comparison of the exponents:

• Hence:

• The second similarity number of this problem is the reciprocal value of the 
Reynolds number

• Sr=f(Re)  variation of 1 parameter in experiment



Example 2

• The hydrodynamic attributes of a motor ship shall be analyzed with a model in a 
water channel.

• Determine the dimensionless parameters of the problem with the method of
differential equations using the momentum equation in z-direction, which describes
the wave motion.

• Given: l, u∞, η, ρ, g.

17

Motor ship

Model



Example 2

• Compute the velocity u′∞ and the kinematic viscosity ν′ of the model fluid such that 
the flows are similar.

• Given: u∞, ν, l/l′ = 10

• Compute the power of the motor ship at the velocity u∞.

• Given: u∞, u′∞ , ρ′, ρ, l/l′ = H/H′ = 10, drag force in the experiment F′.

18



Example 2

• Momentum equation in z-direction:

• Dimensionless Terms for the derivatives:

• 1st derivative:

• 2nd derivative:

• Differential operator:

• The values ρ, η, g are given and constant 
19



Example 2

• Dimensionless parameters:

• Velocity:

• Pressure:

• also possible: ∆p as reference pressure
• reference pressure determines similarity numbers
• Pipe flow: ∆p
• compressible flow around wings etc.: ρu2

∞

• Coordinates:

• Time: 

• u∞/l describes the time that a particle needs to pass a ship that has the
length l and that moves with the velocity u∞.

20



Example 2

• Hence:

21

• Velocity and viscosity in the experiment provided that the flows are similar:



Example 2

• Power of the engine:

22



Example 3

• In a gas flow the heat transfer is determined from the viscous effects and from heat 
conduction. The influencing quantities are the heat conductivity λ [kg m/s³K], the 
dynamic viscosity and the reference values for the temperature, the velocity, and 
the length. The physical relationship can be described with the energy equation:

23

• Determine the dimensionless parameters of the problem

• with the method of differential equations
• with the Π-Theorem

• Expand the resulting parameter with the specific heat capacity cp and formulate the
new coefficient as a product of three different parameters. 

•Hint:
• The material quantities are constant
• The fourth basic dimension is the temperature.



Example 3

• energy equation :

• energy equation with reference values:

24

• Π-Theorem, Physical quantities: 

• Heat conductivity: 

• dynamic viscosity:

• Temperature:

• Velocity:

• Length:



Example 3

25

• Number of similarity numbers:

• Number of physical quantities: k = 5

• Number of basic dimensions (m, s, kg, K): r = 4

• Number of similarity numbers: m = k – r = 1

• recurring variables: η, TR, UR, lR choose b=1

• Similarity number expressed by well-known similarity numbers: 



Example 3

26

• The laminar boundary layer flow on a flat plate, neglecting the viscous heat, can be 
described with the continuity, the momentum, and the energy equation in the 
following form:

• Determine the dimensionless parameters of the problem 

• Reformulate the resulting parameters by using well-known parameters of fluid 
mechanics.

Assuming constant material quantities the flow field is independent of the temperature 
field. Both distributions can be computed separately.

• Specify the assumptions to determine the temperature distribution in the boundary 
layer directly from the velocity distribution. Compare the differential equations and 
assume that the velocity distribution is already known.



Example 3

27

• Method of der Differential equations

• Dimensionless parameters:

• continuity equation:

• Momentum equation:  



Example 3

28

• Momentum equation: 

• Energy equation:



Example 3

29

• Dimensionless equations with constant material properties:

• Comparison between momentum and energy equation:

By replacing T with u and proposing Pr = 1, the energy and the momentum 
equation are identical
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Flows with friction

• Up to now:frictionless flows
 only normal forces  pressure

• Now: flows with friction
 normal and tangential forces

2



Simplications

• Steady flow
• Fully developed flow
• Laminar flow
• Imcompressible flow

Fully developed  The velocity profiles does not change along the axis

 parallel flow

3



Simplifications

• Continuity equation for incompressible flows:

• Example: flow between parallel walls (pipe, plate)

4

at the wall

on the axis

in the entire flow field

everywhere

parallel flow



Momentum equation with friction

5

• x-direction:

 friction forces are balanced by pressure force

• y-direction: (volume forces neglected)



Friction forces

6

• Experiment: Water between two plates: 

Boundary conditions:

(linear velocity profile)

(in this special case)

(no slip-condition)



Viscosity

7

for ordinary fluids (water, oil, air, …):



8

Newtonian fluids

• (weak dependence on p)

•  linear dependence with slope 



9

Non-Newtonian fluids

•  nonlinear dependence!



10

Summary friction forces

• Friction forces react to movements and accelerations

• The higher the viscosity the higher the friction force

• The tangential forces depend strongly on the velocity gradient

• The friciton model depends on the fluid

• “Ordinary fluids” (water, oil, air, ..): Newtonian fluids

• Blood is a Non-Newtonian fluid!
 But under certain conditions (e.g. blood flow in big arteries) the Newtonian

model could be a good approximation



Equilibrium of forces

• y-direction:

 without volume forces!

• x-direction:

driving mechanisms:
• Pressure gradient       in pipes or between plates
• Moving walls       (Couette flow, no slip condition)
• Gravitation     (oil films with free surface)

11



Equilibrium of forces

• Convention: sign of forces

•Positive normal stress (=pressure), if      is contrary to the normal vector

•Positive tangential stress (=friction) points at the coordinate direction, if the 
normal vector points against the coordinate direction

12



Steady flow between parallel plates

• Balance of forces in x-direction:

13



Steady flow between parallel plates

• Newton: 

• Y-direction:

• Velocity profile u(y):  1st integration of

• 2nd integration:  

14

Hydrostatics

with



Steady flow between parallel plates

15

• Boundary conditions: 



Steady flow between parallel plates

• Volume flux per unit width:

• Pressure distribution: if                are known, for  

16

with

(laminar flow)



Couette flow

• Changed boundary conditions:

17



Couette flow

18



Boundary conditions

• Wall 

19

No slip condition

but           is unknown

• Free surface 

Ambient pressure

friction between air and
fluid can be neglected



Boundary conditions

• Limiting surface between two fluids

20

• Symmetry

on the contact surface

on the axis



Method for solving typical laminar 
flow problems

1. Choose an applicable coordinate system

(x along the stream lines)
sketch an infinitesimal element

2. Sketch all forces and stresses

3. Formulate the equilibrium of forces in the direction of streamlines

4. Integrate the differential equation (1st integration)
 distribution of the shear stress

21

Taylor expansion



Method for solving typical laminar
flow problems

5. Introduce a model for    as a function of

6. Integrate the differential equation (2nd integration)
 velocity profile

7. Use boundary conditions for the unknown constants of the integration

22

Bingham:

Ostwald-de Waele: 

Newton:



Entrance flow region

23



Example 

24

• An oil film of constant thickness   and width     is flowing on an inclined plate.

Calculate the volume flux.



Example 

25

• An oil film of constant thickness and width  fully developed flow

Equilibrium of forces

No-slip condition

Continuity: anywhere



Example

26

• Equilibrium of forces for an infinitesimal element



Example

27

• Momentum equation: equilibrium of forces in y-direction 

Fully developed flow

Boundary condition: 



Example

28

for free surfaces

1st integration: 

B.C.:

Newtonian fluid:



Example

29

2 nd integration:

B.C.:



Example 2

30

• Fully developed flow of a Newtonian fluid between two coaxial cylinders

• Given:

a) Derive the differential equation for the shear stress distribution         and the 
velocity        . Integrate the equations.

b) What is the velocity of the inner cylinder         for the  case that the flow does not 
impose any force on it in x-direction?



Example 2

31

a) ,         ?  



Example 2
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• Equilibrium of forces 



Example 2

33



Example 2
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Newtonian fluid:

b)

Boundary conditions

• , no-slip condition

Friction:

• Fully developed flow



Example 2
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1 st integration: 

B.C.:  

2 nd integration: 



Example 2
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B.C.:  



Example 2

37
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Turbulent flows

• Laminar and turbulent flows

2



Turbulent pipe flow

3



Turbulent pipe flow

4



Turbulent pipe flow

5



Turbulent flows

• Reynolds averaging: The turbulent velocity    is split into two parts:

•Mean value 
•Velocity fluctuation

• Example: Pipe

6



Turbulent flows

•Definition:

7



Characteristics of turbulent flows

• Chaotic, stochastic property changes

• Rapid variation of pressure and velocity in time and space

• Laminar flow at low Reynolds numbers, turbulent flow at high Reynolds numbers

• Increased diffusion due to turbulent fluctuations
 higher mixing
 increased heat transfer

•Additional (turbulent) shear stresses
 higher pressure losses (pipe flow)
 increased boundary layer skin friction

8



Computational rules

9

Mean value of the fluctuation

Mean value of the mean value

Mean value of the derivative



Computational rules

10

Level of turbulence

(linear velocity profile)

(usually ≠ 0, e.g. 

Turbulent intensity)



Momentum equation

11

• Convective terms in the momentum equation for three-dimensional, incompressible
and unsteady flow:

e.g.

• Mean value of the convective terms:



Bernoulli equation (Energy equation)

12

• Pipe flow with total pressure loss:



Bernoulli equation (Energy equation)

13

pressure loss coefficient for inlets, ellbows, …

loss coefficient for straight pipes

bulk mean velocity

For most geometries,                                  is determined in 
experiments and listed in tables



• Turbulent (                            )

• Laminar (                  )

14

Pressure loss coefficients and 
reference velocity

• Pressure loss coefficients for pipes (smooth pipes)

for circular cross-sections (Hagen-Poiseuielle)

Blasius

Prandtl, iterative solution
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Pressure loss coefficients and 
reference velocity

• Viscous effects in pipes: bulk mean pipe velocity

• Inlets: bulk mean pipe velocity



16

Pressure loss coefficients and 
reference velocity

• Unsteady change of cross section: bulk mean velocity at the inlet

Carnot equation

• Laminar flow, inlet, circular pipes:



Example

• A fountain is supplied by a large tank and is connected to this tank using a pipe 
system. This system consist of four straight pipes with an overall length of L, two 
ellbows and a valve.

• Given:

17

• Determine the volume flux and the height H for a flow including losses and a 
flow without losses for  a)                and b)            .



Example

• Bernoulli:

18

• Remarks:
− “0”: total
− “1”: surface of the fluid of the tank
− “2”: nozzle exit



Example

• Bernoulli from “d”  “H” (            )

19

• Extended Bernoulli

• Continuity

bulk mean nozzle velocity
bulk mean pipe velocity



Example

20

lossfree with losses



Example

21

• Ceiling of the fountain: 



Example 2

• The velocity profile of the fully developed flow in a pipe with a smooth surface can
be approximated with the following potential law:

22



Example 2

a) Use the continuity equation to compute the relation between the bulk mean 
bulk mean velocity      and the maximum velocity         , i.e.

23

b) Determine the position       , where                      . 

c) How can the results of a) and b) be used to measure the volume flux? 

a) The ratio between the average and the maximum velocity is  



Example 2
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b) The integral is solved using partial integration, and the result of this integration 
can be used to compute the distance           using the following relationship:

c) Measuring        at a distance              from the wall, and with the known           
the average velocity can be determined, and the volume flux                       can 
be computed.



Example 3

• A Bingham fluid flows into the direction of gravity between two inifinite, parallel, 
vertical plates. 

25

• Given: 

• Determine for a fully developed flow

a) the distance 
b) the velocity profile 



Example 3

a)

26

Bingham fluid:

If     exceeds    , the fluid starts to flow.

As long as    does not exceed     , the fluid acts like a solid body.



Example 3

Infinitesimal element:

27

Fully developed flow:

Equilibrium of forces:



Example 3

Hence:

28

Integration:

B.C. for 

Symmetry: 

(does not depend on the fluid) 



Example 3

straight line

29

inner region, solid body:

a) Velocity profile 

outer region, flow for



Example 3

Fully developed flow: 

30

Hence:

Sign: 

Symmetry: 

Integration:



B.C.: no-slip condition on the wall

Example 3

31

Finally:



• The pressure decrease      along     measured in a fully developed pipe flow with
the volume flux    .

Example 4

32

• Given:

• Determine

a) the skin-friction coefficient,
b) the equivalent roughness of the pipe,
c) the wall shear stress and the force of the support.
d) What is the pressure decrease, if the pipe is smooth?



Example 4 
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Example 4
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a)



Example 4
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b)

c) Momentum equation for the inner control surface: 



Example 4
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c) Momentum equation for the outer control surface: 

d)



Moody Diagramm


