
............................................................................... .............................................................................
(Matr.-No., Signature)

Exam Fluid Dynamics

14 August 2020



Leer



Problem 1 (8 Points)

A raft is modelled by two connected cylinders. The volumes of the cylinders are Vr and Vl
and the center of gravity of the mass m is located at xs. The stable position of the raft in the
interval xmin < xs < xmax is ensured since both cylinders generate higher lift with increasing
immersion depth.

a) Sketch position of the raft in the water for:

I) xmin < xs < L/2 and Vl = Vr

II) 0 < xs < xmin

b) Determine the limits of the interval xmin and xmax for which the raft is in a stable position
on the water.

c) Which status does xs = xmin = xmax describe? Describe a possible position of the raft in
the water for this case.

Given:

g, Vl, Vr, m, L, %W

Hints:

• Neglect the influence of the surrounding air!

• Check the units and signs of your results!



Problem 1

a) As long as the cylinder is not completely wetted, the buoyancy increases with the immer-
sion depth.

I) stable, because at Vl = Vr the limit xmax is on the right side of L/2.→ both cylinders
are not completely wetted and the left cylinder is deeper in the water

II) unstable→ one float is completely wetted. The position of the raft is parallel to the
acceleration of gravity.

b) Force balance of the raft considering the displaced volume of the cylinders V ∗l and V ∗r :∑
F = 0 = −mg + V ∗l %Wg + V ∗r %Wg (1)

Moment balance about the center of gravity when the raft is inclined by the angle α:∑
M = 0 =− V ∗l %Wgxs cosα + V ∗r %Wg(L− xs) cosα (2)

→ xs = LV ∗r /(V
∗
r + V ∗l )



The limits of the interval are determined by considering only one fully wetted cylinder.
From the forces balance then follows

xmin : V ∗l = Vl → V ∗r = m/%W − Vl
xmax : V ∗r = Vr → V ∗l = m/%W − Vr .

When plugged into the moment balance, the following results for the limits of the interval

xmin =L(1− %WVl/m)

xmax =L%WVr/m (3)

c) From xmin = xmax follows m = %W (Vl + Vr) which corresponds to the force balance (1)
with completely wetted cylinders V ∗r = Vr and V ∗l = Vl. The raft is in the floationg state.

If additionally xs = xmin = xmax, the center of gravity xs fulfills the moment balance for
cosα 6= 0.

For example, using m = %(Vl + Vr) from (3)

xs = xmax = L%WVr/(%w(Vr + Vl)) = LVr/(Vr + Vl) . (4)

This corresponds to the moment balance (2) in the floating state V ∗r = Vr and V ∗l = Vl
for all inclination angles α.



Problem 2 (12 Points)

Water flows from a large container through an angled, circular pipe into the open air. Inside the
tube, there is a manometer filled with mercury to determine the flow rate. At the manometer
and at the pipe elbow, the losses ζMa, ζMe and ζK occur. In the pipe, there is the pipe friction
coefficient λ. However,the friction for the pipe piece of length L2 can be neglected. The losses
in the well rounded inlet and the friction in the manometer body are also negligible.

a) Determine the mass flow through the pipe?

b) Determine the deflection e of the mercury column from the position at rest for the steady
flow. To do this, first set up the force balance for the resting state and the deflected state.
The velocity va at the outlet can be assumed to be known for this part of the task.

In the following, consider the system without mercury manometer. A throttle (ζD) is mounted
at the outlet. When the throttle closes at t > 0 velocity at the outlet of the throttle is given by

v(t) = v0e
(− t

T0
)
, with T0 > 0 and v0 = v(t ≤ 0).

c) Specify the profile of the static pressure p(t) at the outlet for t ≥ 0.

Given: D1, D2, L1, L2, λ, g, H, pa, T0, ρW , ρQS,

ζK , ζD, ζMa, ζMe

Hints:
• Check the units and signs of your results!



Problem 2

a) Mass flux ṁ:
Bernoulli from the upper edge of the container to the outlet:

pa + %wg(H + 2L1 + L2) = pa + %w
2
v2
a

(
1 + λ3L1

D1
+ ζMe + ζMa

(
D1

D2

)4

+ ζk

)
⇒ va =

√
2g(H+2L1+L2)

1+λ
3L1
D1

+ζMe+ζMa(
D1
D2

)4+ζK

ṁ = %wva
πD2

1

4
= %w

π
4
D2

1

√
2g(H+2L1+L2)

1+λ
3L1
D1

+ζMe+ζMa(
D1
D2

)4+ζK

b) Deflection e

Balance of forces in the deflected state:

pa + %QSg(h− e) = pi + %wg(h− e) + %QSge (5)
⇔ pa − pi + (%QS − %w)gh = eg(2%QS − %w) (6)

Balance of forces at rest:

pa + %wg(H + L1 +
L2

2
) + %wgh = pa + %QSh (7)

⇒ h =
%w

%QS − %w
(H + L1 +

L2

2
) (8)

Bernoulli from the top of the container to the manometer inlet:

pa + %wg(H + L1 +
L2

2
) = pi +

%w
2
v2
i + ζMe

%w
2
v2
a + λ

L1

D1

%w
2
v2
a (9)

⇔ pi = pa + %wg(H + L1 +
L2

2
)− %w

2
v2
a

[(
D1

D2

)4

+ λ
L1

D1

+ ζMe

]
(10)

Using continuity: viAi = vaAa ⇔ vi = va(
D1

D2
)2

Inserting pi and h and solving for e gives

e =

−%wg(H + 2L1 + L2) + %w
2
v2
a

[(
D1

D2

)4

+ λ L1

D1
+ ζMe

]
+ (%QS − %w)g(H + 2L1 + L2) %w

%QS−%w

g(2%QS − %w)
(11)

c) Unsteady Bernoulli from the upper container edge to the outlet:



pa + %wg(H + 2L1 + L2) =

p(t) + %w
2
va(t)

2

(
1 + λ3L1

D1
+ ζMe + ζMa

(
D1

D2

)4

+ ζK + ζD

)
+ %w

∫ aus
0

∂v
∂t
ds

with%w
∫ aus

0
∂v
∂t
ds = %w

dva(t)
dt

(
3L1 +

(
D1

D2

)2

L2

)
, dva(t)

dt
= − v0

T0
e
− t

T0

⇒ p(t) = pa + %wg(H + 2L1 + L2)

−%w
2
v2

0

(
e

(− 2t
T0

)
)(

1 + λ3L1

D1
+ ζMe + ζMa

(
D1

D2

)4

+ ζK + ζD

)
+ v0
T0
e
− t

T0

(
3L1 +

(
D1

D2

)2

L2

)



Problem 3 (7 Points)

The elastic limit τ0 of a cheese sauce is of great importance for the efficient suction through
a macaroni noodle. It is this quantity that is to be determined. The optimum elastic limit is
reached when no sauce can be sucked in through the macaroni. To calculate the elastic limit,
a macaroni with inner diameter D and length L between mouth and plate is considered. The
macaroni is filled with sauce and stabilized by the mouth. For the mouth, the internal pressure
pi to suck in the sauce is known and at the lower end of the macaroni the ambient pressure pa
can be assumed. The cheese sauce is treated as Bingham fluid.

a) Derive the shear stress distribution in the cheese sauce and determine the elastic limit τ0.

An error in preparation causes a negligible elastic limit and τ0 = 0 can be assumed. The suffi-
ciently available sauce is now absorbed by the macaroni. The pressure difference between the
inlet and outlet of the macaroni remains constant.

b) Determine the velocity distribution in the macaroni.

Given:

g, ρ, η, L, D, D � L, pi, pa

Hints:

• Flow law for Bingham fluids: τ = τ0 + η du
dr

• A macaroni is a pipe shaped noodle.

• Check the units and signs of your results!



Problem 3

a) Force balance in x-direction:

∑
F = 0 =− %g2πrdxdr

− (p+ dp/2)2πrdr + (p− dp/2)2πrdr

+ (τ − dτ/2)(r − dr/2)2πdx

− (τ + dτ/2)(r + dr/2)2πdx

0 =− %gr − rdp/dx− d(τr)/dr

Integrating from r = 0 to r using the boundary condition τ(r = 0) = 0:

τ = −1

2

(
%g +

dp

dx

)
r

To prevent sauce from flowing through the macaroni, the elastic limit must be on the wall:

τ0 = −1

2

(
%g +

dp

dx

)
D

2

Using dp/dx = (pi − pa)/L follows:

τ0 = −1

2

(
%g +

pi − pa
L

)
D

2
.

b) For τ0 = 0, the Bingham fluid becomes a Newtonian fluid with τ = −ηdu/dr.

du =
1

2η

(
%g +

pi − pa
L

)
rdr

Using the boundary condition u(r = D/2) = 0 yields

u(r) =
1

4η

(
%g +

pi − pa
L

)
(r2 −D2/4) .



Problem 4 (11 Points)

In a parallel flow with the velocity u0 in the x-direction, a source with the strength E is located
at (x, y) = (0, 0).

a) Determine the potential function F (z). Sketch the flow field and mark clearly the contour
streamline.

b) Determine the coordinates of the stagnation point in polar coordinates.

c) Determine ymax of the contour streamline.

d) A second source with the strength E is added to the flow field. It is located perpendicular
to the parallel flow at a distance a above the first source. Sketch the contour streamline(s)
for a = ymax

2
and a = 4ymax.

e) Determine is the velocity in the direction of the y-axis on the centerline between the two
sources?

Given: u0, E > 0, a

Hints:

• z = x+ iy = r · eiϕ = r(cosϕ+ i sinϕ)

• Tabulated sin and cos values:

ϕ 0 1
8
π 1

4
π 3

8
π 1

2
π 5

8
π 3

4
π 7

8
π π

sin(ϕ) 0

√
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√

2

2

√
2

2

√
2+
√

2

2
1

√
2+
√

2

2

√
2

2

√
2−
√

2

2
0

cos(ϕ) 1

√
2+
√

2

2

√
2

2

√
2−
√

2

2
0 −

√
2−
√

2

2
−
√

2
2
−
√

2+
√

2

2
−1

tan(ϕ) 0
√

2−
√

2
2+
√

2
1

√
2+
√

2
2−
√

2
∞ −

√
2+
√

2
2−
√

2
−1 −

√
2−
√

2
2+
√

2
0

known complex potential functions:

Potential vortex: F (z) = − iΓ
2π

ln z

Source/sink: F (z) = E
2π

ln z

Dipole: F (z) = M
2πz

Stagnation point: F (z) = αz2

Parallel flow: F (z) = (u0 − iv0)z



Problem 4

a)

F (z) = u0z +
E

2π
ln(z)

b)

F (z) = u0(x+ iy) +
E

2π
ln(reiϕ)

The potential function reads:

Φ = u0x+
E

2π
ln(
√
x2 + y2)

This yoelds the velocities.

u =
∂Φ

∂x
= u0 +

E

2π

x

x2 + y2

v =
∂Φ

∂y
=

E

2π

y

x2 + y2

At the stagnation point, both velocity components are 0. Thus, the stagnation point is at
xS = − E

2πu0
and yS = 0.

in polar coordinates:

rS =
√
x2
S + y2

S =
E

2πu0

ϕS = atan

(
yS
xS

)
= π



c) For the stream function, the following results are obtained:

Ψ = u0y +
E

2π
ϕ = u0r sinϕ+

E

2π
ϕ

From x→∞ and y = ymax follows ϕ→ 0. The value of the stream function is:

Ψ∞ = u0ymax

The value of the stream function along the contour of the half-body is constant. Therefore,
the stream function is also evaluated at the stagnation point and equated with Ψ∞.

ΨS = Ψ(r =
E

2πu0

, ϕ = π) = u0
E

2πu0

sin(π) +
E

2π
π

Ψs =
E

2

Ψ∞ = Ψs → u0ymax =
E

2

ymax =
E

2u0

d) Flow with two sources

Abbildung 1: a = ymax

2 Abbildung 2: a = 4ymax

e) The velocity in the y-direction is 0.



Problem 5 (11 Points)

A laminar, incompressible boundary layer develops along a flat plate with span B. A constant
volume flux V̇ is sucked off over the length L through equidistantly distributed pressure holes
in the plate. For the tangential velocity profile, the following polynomial approach applies:

u(y)

ua
= a0 + a1

(y
δ

)
+ a2

(y
δ

)2

+ a3

(y
δ

)3

a) Determine the coefficients of the velocity profile for this boundary layer.

b) Sketch the graph of the laminar boundary layer thickness along the coordinate x starting
at the leading edge of the plate. Draw the velocity distribution u(0 ≤ y ≤ δ) at three
locations within the boundary layer as it develops.

Due to a technical defect, the suction device fails and the boundary layer can no longer be kept
laminar.

c) What is the critical Reynolds number for the incompressible flow along a flat plate?

d) Assume that the boundary layer flow is turbulent right at the leading edge of the plate.
Sketch again the distribution of the boundary layer thickness and the velocity profiles at
three positions within the boundary layer. Specify two differences between the laminar
and the turbulent boundary layer.

Given: η, ρ, δ, ua = const., V̇ , B, L

Hint:

Boundary layer equation (x momentum equation): u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dp

dx
+
η

ρ

∂2u

∂y2
.



Problem 5

a) Determination of the coefficients a0, a1, a2, a3

(I) no-slip condition: u(y = 0) = 0→ a0 = 0

(II) at the edge of the boundary layer: u(y = δ) = ua → 1 = a1 + a2 = a3

(III) momentum equation in the x-direction at the wall : −v ∂u
∂y

= η
ρ
∂2u
∂y2

− V̇

BL
uaa1 =

η

ρ

2a2

δ

a1 =
−2BLη

ρδV̇ ua
a2

(IV) Smooth transition at the boundary layer edge: ∂u
∂y y=δ

= 0→ a1 + 2a2 + 3a3 = 0

Elimination of a3 from (II) and (IV):

3 = 2a1 + a2

(III) plug in and transform:

a2 =
3ρδV̇ ua

ρδV̇ ua − 4BLη

This yields for the remaining coefficients

a1 =
−6BLη

ρδV̇ ua − 4BLη

a3 =
7BLη − 2ρδV̇ ua

ρδV̇ ua − 4BLη

b) Sketch of the laminar boundary layer thickness and the profile of the velocity u(y)



c) The critical Reynolds number for the flat plate is 5 · 105.

d) • The velocity profile of the turbulent boundary layer is more bulky,
• the turbulent boundary layer is thicker,
• higher friction in the turbulent boundary layer ,
• In the laminar boundary layer the flow lines are almost parallel to each other (flow

in layers)
• ...



Problem 6 (11 Points)

a) Show that the sum of molecular shear stress τlam(y) and turbulent apparent stress τtur(y)
is constant.
Hint: τtur = −%u′v′

b) Show with the Prandtl’s mixing length approach that the time averaged velocity is pro-
portional to the wall distance (u ∼ y) in the vicinity of the wall for y → 0.
Hint: Prandtl’s mixing length approach:

τtur = %l2
∣∣∣∣∂ū∂y

∣∣∣∣ ∂ū∂y with l = κy

Given: %, η, p, u0, κ

c) Define the displacement thickness δ1 and give the equation for δ1 = f(u(y)
ua

).

d) Determine the ratio of the momentum thickness to the boundary layer thickness in a tur-
bulent boundary layer taking into account the 1

7
velocity profile.



Problem 6

a)

a) η, % 6= f(y)

0 =
∂

∂y
(η
∂u

∂y
)− ∂%u′v′

∂y

⇔ 0 =
∂

∂y
(−τlam + τtur)

Intregation⇒ −τlam + τtur = const.

b)

mit τtur = %x2y2|∂u
∂y
|∂u
∂y

⇒ lim
y→0

[η
∂u

∂y
+ %x2y2|∂u

∂y
|∂u
∂y

] = η
∂u

∂y

η
∂u

∂y
= const.

Integration ⇒ u =
const.
η

y + const.

⇔ u ∼ y

c) The displacement thickness corresponds to the distance by which a body must be thicke-
ned in a hypothetical frictionless flow such that the same mass flow occurs as in the actual
flow.

δ1 =
∫∞

0
(1− u

ua
)dy

d) For the 1
7

velocity profile, the power law gives the velocity distribution in the turbulent
boundary layer:

ū

ua
=
(y
δ

) 1
7

with the definition of the momentum thickness

δ2 = δ

∫ 1

0

ū

ua

(
1− ū

ua

)
d
(y
δ

)
the ratio of momentum thickness and boundary layer thickness is:

δ2

δ
=

∫ 1

0

((y
δ

) 1
7 −

(y
δ

) 2
7

)
d
(y
δ

)

δ2

δ
=

7

8

(y
δ

) 8
7 − 7

9

(y
δ

) 9
7

=
7

8
− 7

9

δ2

δ
=

7
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