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Problem 1 (8 Points)

Two different m1 and m2 (m1 > m2) are attached to a beam balance. The base area Am and
the height H of them are identical. Below each mass, there is an empty container with a cross-
sectional area of A.

a) Container B1 is filled with water of volume VW , such that the bars of the balance are in
the horizontal position. Determine the difference of the masses ∆m = m1 −m2.

b) Then, container B2 is filled with the same water volume VW . Determine the inclination
angle of the bars against the horizontal line.

c) How does the angle change qualitatively when container B2 is filled with a salt solution
instead of water (ρSL > ρW )?

Given:

Am, H, A, L, l, s, VW , VSL = VW , ρW
Hints:

• Neglect the influence of the surrounding air!

• Check the units and signs of your results!



Problem 1

a) Force equilibrium for m1:

FA = m1g −m2g und FA = ρWghAm

Volume balance for the water:

VW = Ah0 + (A− Am)h

⇒ h =
VW − Ah0

A− Am
The same applies: L = h0 +H + l ⇔ h0 = L− l −H
Insert into volume balance:

h =
VW − A(L− l −H)

A− Am
Insert into force equilibrium:

m1 −m2 = ρWAmh

⇔ ∆m = m1 −m2 =
ρWAm
A− Am

[VW − A(L− l −H)]

b) Equilibrium of moments:

(m1g − FA1)s cos(α) = (m2g − FA2)s cos(α)

⇔ m1 − ρWh1Am = m2 − ρWh2Am

⇔ m1 −m2 = ρWAm(h1 − h2)

Inclination angle α:

L− s sin(α) = h01 +H + l and L+ s sin(α) = h02 +H + l

⇒ h02 − h01 = 2s sin(α)

Insert into equilibrium of moments:

m1 −m2 = ρW
A · Am
A− Am

2s sin(α)

⇔ α = arcsin

(
m1 −m2

2sρw
· A− Am
A · Am

)
= arcsin

(
ρWAm
A−Am [VW − A(L− l −H)]

2sρw
· A− Am
A · Am

)
c) Equilibrium of moments in b) shows:

FA2 ∼ ρh2

ρSL > ρW ⇒ FA2 ↑⇒ h2c) ↓⇒ α ↑



Problem 2 (12 Points)

To fill a steam engine with water, the valve at the end of the pipe is suddenly opened. The dia-
meter D of the pipe is constant and the length of the pipe is L. The orifice of the large water
tank of the steam engine has the diameter d and is located at a distance ∆h vertically below the
exit of the pipe.

a) Carefully sketch the distribution of the static pressure as a function of the length of the
pipe before and after opening the valve, when a steady state flow has developed.

b) Determine the time ∆T until 99% of the steady state velocity is reached after opening the
valve.

c) Determine the distance ∆h > 0 under the condition that no water passes by the orifice of
the water tank of the steam engine.

d) What limits must be satisfied for h2 and h3 such that ste static pressure in the pipe is
greater than the steam pressure pD?

Given: h1, h2, h3, L, D, L >> D, d, d < D, ρ, g, pa, pD

Hints:

• The flow is incompressible and inviscid.

• The following integrals are given:∫
dx

a2 − x2
=

1

2a
ln
a+ x

a− x
for |x| < a∫

dx

ax+ b
=

1

a
ln(ax+ b) for a 6= 0∫

x dx

ax+ b
=

x

a
− b

a2
ln(ax+ b) for a 6= 0

• Check the units and signs of your results!



Problem 2

a)

b) Steady state Bernoulli from 0 − 6:

pa + ρgh1 = pa +
ρ

2
v2
steady + ρg(h2 − h3)

pa = pa +
ρ

2
v2
steady + ρg(−h1 + h2 − h3)

⇒ vsteady =
√

2g(h1 − h2 + h3)

Unsteady Bernoulli from 0 − 6:

pa = pa +
ρ

2
v2 + ρg(−h1 + h2 − h3) + ρ

∫
∂v

∂t
ds

with
∫
∂v

∂t
ds =

dv

dt
L since D << L

⇒ dv

dt
=

2g(−h1 + h2 − h3)− v2

2L
=
v2
steady − v2

2L∫ 0.99vsteady

0

dv

v2
steady − v2

=

∫ ∆T

0

dt

2L

⇒ ∆T =
L

vsteady
ln

(
1 + v

vsteady

1− v
vsteady

)

⇔ ∆T =
L

vsteady
ln

(
1.99

0.01

)
=

L√
2g(h1 − h2 + h3)

ln(199)

c) Steady state Bernoulli: 6 - 7

pa + ρg∆h+
ρ

2
v2
steady = pa +

ρ

2
v2

7

Continuity:
πD2

4
vsteady =

πd2

4
v7 ⇒ v7 =

D2

d2
vsteady

⇒ ∆h =
v2

7 − v2
steady

2g
=
v2
steady

2g

(
D4

d4
− 1

)
⇔ ∆h = (h1 − h2 + h3)

(
D4

d4
− 1

)



d) pmin in steady state flow between 4 and 5

pa + ρgh1 = p4 +
ρ

2
v2
steady + ρgh2

with p4min = pD and v2
steady = 2g(h1 − h2 + h3)

h3 =
pa − pD
ρg

⇒ h2 is arbitrarily chosen : h3max =
pa − pD
ρg



Problem 3 (13 Points)

A pump consists of a cylindrical shaft with radius Ri, which rotates in an inner cylinder with
radius Ra. Both cylinders have the length L. In the gap between the cylinders is a fluid of
viscosity η. The shaft rotates with the angular velocity ωi, at the outer cylinder the torque Ma is
measured at the angular velocity ωa.

a) Formulate the momentum equilibrium for a cylindrical element to show the validity of:

∂(r2τ)

∂r
= 0

.

b) Consider the hints and determine the velocity distribution v(r, ωa) as a function of the
angular velocity ωa.

c) Determine the maximum torque that can be converted and the associated angular velocity
ωa.

d) Determine the angular velocity ωa for which the maximum power is converted.

Given:

Ri, Ra, ωi, L, η, 0 ≤ ωa ≤ ωi

Hints:

• Higher-order terms are negligible.

• The flow in the gap is steady and fully developed.

• The following equations are given:

1

r2

d(r2τ)

dr
= −η d

dr

(
1

r

d(rv)

dr

)

τ = −ηr
d(v

r
)

dr

• Check the units and signs of your results!



Problem 3

a) Equilibrium of moments:

τ · 2πrL · r − (τ +
∂τ

∂r
dr) · 2πL(r + dr) · (r + dr) = 0

τr2 − (τ +
∂τ

∂r
dr)(r2 + 2rdr + dr2) = 0

−2τrdr − τdr2 − r2∂τ

∂r
dr − 2rdr

∂τ

∂r
dr − ∂τ

∂r
drdr2 = 0

2τrdr + r2∂τ

∂r
dr = dr(2τr +

∂τ

∂r
r2) = 0 da Terme O(2) ≈ 0

∂(r2τ)

∂r
= 0

b) Use given velocity distribution:⇒ η
d

dr

(
1

r

d(rv)

dr

)
= 0

1st Integration:
1

r

d(rv)

dr
= C1; 2nd Integration: rv =

1

2
C1r

2 + C2

Boundary conditions: v(r = Ri) = ωiRi; v(r = Ra) = ωaRa;

R2
iωi =

1

2
C1R

2
i + C2; R2

aωa =
1

2
C1R

2
a + C2

⇒ C1 =
2(R2

iωi −R2
aωa)

R2
i −R2

a

; C2 =
R2
iR

2
a(ωa − ωi)
R2
i −R2

a

v(r, ωa) =
R2
iωi −R2

aωa
R2
i −R2

a

r +
R2
iR

2
a(ωa − ωi)
R2
i −R2

a

1

r

c) Maximum moment at ωa = 0⇒Ma = 2πR2
aLτ(r = Ra)

τ = −ηr d
dr

[
1

2
C1 + C2

1

r2

]
= −ηr

(
−2C2

r3

)
= 2η

C2

r2
⇒ τ(r = Ra) = 2η

C2

R2
a

Ma,max = −4πLη
R2
iR

2
aωi

R2
i −R2

a

d) Maximum power: P = Maωa = 2πR2
aLτ(r = Ra)ωa ∝ ωaC2

∂P

∂ωa
=̇0 =

∂(ω2
a − ωiωa)
∂ωa

= 2ωa − ωi ⇒ ωa = ωi/2



Problem 4 (9 Points)

The symmetrical flow around two identical half bodies is considered, whose singularities have
the distance b from each other and whose connecting line is perpendicular to the flow direction.

a) Specify the complex potential function F (z) and the sign(s) of the constants of the ele-
mentary function(s) used for the described flow.

b) Calculate, preferably from the conjugated complex velocity field w̄(x, y), the velocity
components u(x, y) and v(x, y).

c) Qualitatively sketch the calculated flowfield. Draw the coordinate system used and mark
the stagnation point streamline(s), the stagnation point(s) and the body contours.

Given: a, b, all necessary constants of the elementary functions

Known complex potential functions:

Potential vortex: F (z) = − iΓ
2π

ln z

Source/Sink: F (z) = E
2π

ln z

Dipole: F (z) = M
2πz

stagnation point flow: F (z) = αz2

Parallel flow: F (z) = (u∞ − iv∞)z

Hints:

• z = x+ iy = r · eiϕ = r(cosϕ+ i sinϕ)

• 1

z
=

z̄

zz̄



Problem 4

a) 2 half bodies: 2 sources at distance b + parallel flow
Symmetrical flow field: Sources of equal strength

F (z) = FParallel + FSource1 + FSource2

⇒ F (z) = u∞z +
E

2π
ln z +

E

2π
ln(z − ib) with u∞, E, b > 0

Note: arithmetic operation at ln(z ± ib) depending on the coordinate system from the
sketch in part c)

b) complex conjugated speed w̄ =
dF

dz
= u− iv

w̄ =
dF

dz
= u∞ +

E

2πz
+

E

2π(z − ib)

with
1

z
=

z̄

zz̄
=

x− iy
x2 + y2

and
1

(z − ib)
=

1

x+ i(y − b)
(x− i(y − b))
(x− i(y − b))

=
(x− i(y − b))
x2 + (y − b)2

→ w̄ = u∞ +
E

2π

(
x− iy
x2 + y2

+
(x− i(y − b))
x2 + (y − b)2

)
u(x, y) = u∞ +

E

2π

(
x

x2 + y2
+

x

x2 + (y − b)2

)
v(x, y) =

E

2π

(
y

x2 + y2
+

y − b
x2 + (y − b)2

)
c) Sketch:

X

y

ü

symmetrisch
ö

gerade Trennlinie

Ergiebigkeiten

Staupunkte



Problem 5 (11 Points)

An aircraft is powered by a jet engine, the inlet of which is located on the lower side. For an
angle of attack α = 0, consider the boundary layer that forms on the lower side of the fuselage
during a subsonic flight at speed Ua. The upstream effect of the engine inlet can be neglected.
The velocity profile in the boundary layer can be represented by the following polynomial
approach:

u(x, y)

Ua
=

4∑
i=0

ai

(y
δ

)i
.

a) Determine the coefficients ai assuming an even flow.

b) Explain and sketch without specifying the formula the physical meaning of the displace-
ment thickness δ1.

c) For the ratio of the momentum thickness to the boundary layer thickness in the case un-
der consideration δ2/δ = 37/315 applies. Prove with the help of von Kármán’s integral
relation the connection

δ

x
=

5, 84√
Rex

.

d) Determine the distance hE between the engine and the fuselage (see sketch) such that no
fuselage boundary layer enters the engine inlet.

Given: ρ, η, L, Ua = const.

Hint:

von Kármán integral relation:
dδ2

dx
+

1

Ua

dUa
dx

(2δ2 + δ1) =
τw
ρU2

a



Problem 5

a)

u

Ua
= a0 + a1

(y
δ

)
+ a2

(y
δ

)2

+ a3

(y
δ

)3

+ a4

(y
δ

)4

∂
(
u
Ua

)
∂
(
y
δ

) = a1 + 2a2

(y
δ

)
+ 3a3

(y
δ

)2

+ 4a4

(y
δ

)3

∂2
(
u
Ua

)
∂
(
y
δ

)2 = 2a2 + 6a3

(y
δ

)
+ 12a4

(y
δ

)2

Boundary conditions:

1stBC
y

δ
= 0 :

u

Ua
= 0⇒ a0 = 0

2ndBC
y

δ
= 1 :

u

Ua
= 1⇒ a1 + a2 + a3 + a4 = 1

3rdBC
y

δ
= 0 :

∂2
(
u
Ua

)
∂
(
y
δ

)2 = 0⇒ a2 = 0

4thBC
y

δ
= 1 :

∂
(
u
Ua

)
∂
(
y
δ

) = 0⇒ a1 + 3a3 + 4a4 = 0

5thBC
y

δ
= 1 :

∂2
(
u
Ua

)
∂
(
y
δ

)2 = 0⇒ 6a3 + 12a4 = 0

Thus follows from the 5thBC a3 = −2a4,

inserted into the 4thBC a1 = 2a4,

inserted into the 2ndBC a4 = 1→ a3 = −2→ a1 = 2

u

Ua
= 2

(y
δ

)
− 2

(y
δ

)3

+
(y
δ

)4

b) 1.) Displacement thickness: The distance by which the body must be thickened in a theo-
retically friction-free flow such that the same mass flow occurs as in the actual frictional
flow.



c) von Kármán’s integral relationship results for the plane problem:
dδ2

dx
=

τw
ρU2

a

with
dδ2

dx
=

37

315

dδ

dx

and τw = η
∂u

∂y

∣∣∣∣
y=0

=
ηUa
δ

∂
(
u
Ua

)
∂
(
y
δ

)
∣∣∣∣∣∣
y
δ

=0

=
2ηUa
δ

→ 37

315

dδ

dx
=

2η

ρUaδ

δdδ =
630

37

η

ρUa
dx

δ2

2
=

630

37

ηx

ρUa

δ

x
=

√
1260

37

1√
Rex

=
5.84√
Rex

q.e.d.

d)

hE = δ(L) =
5, 84√
ρUa
ηL



Problem 6 (7 Points)

a) Derive the Bernoulli equation without losses for an inclined streamline element.

b) Sketch the mean velocity profile of a turbulent flow in a circular pipe. Mark the individual
layers.



Problem 6

a) ∑
d~F = dm

d~v

dt
⇔ −dGsinα + pdA− (p+ dp)dA

with dG = gdm = ρgdsdA and sinα =
dz

ds

⇒ ρdsdA
dv

dt
= −ρgdsdAdz

ds
− dpdA

⇔ ρ
dv

dt
= −ρgdz

ds
− dp

ds

Since v = F (s, t), applies:

dv =
∂v

∂t
dt+

∂v

∂s
ds

⇒ dv

dt
=
∂v

∂t
+ v

∂v

∂s
=
∂v

∂t
+
∂(v

2

2
)

∂s

Insert results:

ρ
∂v

∂t
+
ρ

2

∂v2

∂s
+
dp

ds
+ ρg

dz

ds
= 0

⇒ p+
ρ

2
v2 + ρgz + ρ

∫
∂v

∂t
ds = const.

b) Sketch
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