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Problem 1 (7 Points)

a) Explain the theorem of Archimedes and give the equation to determine the buoyancy
force. Specify the variables of the equation.

b) Which condition must be fulfilled for the equation to be valid?

In the following, a cuboid of length b, height 2h and width t is considered in a container filled
with a fluid of density ρf (z) = ρ0 + α z + β z2. The atmospheric pressure pa is constant.
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c) Determine the pressure integral over the surface of the cuboid and use it to determine the
buoyancy of the cuboid.

d) Under which condition for the material coefficients {α, β} can the buoyancy of the body
be determined via the Archimedes’ principle using the average density ρf = ρf (z0)?

Given:

ρ0, α, β, b, h, t, g, z0

Hint:

• Check your results for unit and sign plausibility!



Problem 1

a) The buoyancy force of a body corresponds to the weight of the fluid displaced by it. FA =
ρfgVk, where FA denotes the buoyancy force, ρf the density of the fluid surrounding the
body, g the acceleration due to gravity, and Vk the volume of the body.

b) constant density

c) Pressure Integral: ~F =

∫
AK

p(z)~nAdA or FA = −
∫
AK

p(z)nz,AdA

The components of the surfaces parallel to the z-direction cancel each other out. It remains

FA = −Fz = bt p(z0 + h)− bt p(z0 − h).

In general: p(z) = pa +

z∫
0

ρ(z̃)gdz̃.

Inserted: p(z) = pa + g(ρ0z + 1
2
αz2 + 1

3
βz3)

Upper side: po = pa + g(ρ0(z0 − h) + 1
2
α(z0 − h)2 + 1

3
β(z0 − h)3)

Lower side: pu = pa + g(ρ0(z0 + h) + 1
2
α(z0 + h)2 + 1

3
β(z0 + h)3)

Hence:

FA = (pu− po)bt = btg(2ρ0h+ 1
2
α((z0 + h)2− (z0− h)2) + 1

3
β((z0 + h)3− (z0− h)3))

d) Mean density: ρf = ρ0 + αz0 + βz2
0

Volume of the body: V = bt2h

The following must apply: FA = ρfgV

FA = btg(2ρ0h+ 1
2
α(4z0h) + 1

3
β(6z2

0h+ 2h3))

gbt2h(ρ0 + αz0 + βz2
0 + β h

2

3
) = (ρ0 + αz0 + βz2

0)gbt2h

The density distribution must be linear. Only for the linear distribution the mean value of
the density lies in the center of the body⇒ β = 0.



Problem 2 (8 Points)

A plane object is mounted vertically on a conveyor belt. This object is to be cleaned by a two-
dimensional water jet. The water jet exits at the velocity v the nozzle of width B at the angle α
against the horizontal. The jet is deflected by the object as shown in the sketch. The flow in the
jet can be considered without any losses.
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a) Calculate the components of the force per depth extent T exerted by the jet on the object
when the conveyor belt is not moving.

b) Calculate the widths B1 and B2 of the deflected jet when the conveyor belt is not moving.

c) Determine the components of the force per depth extent T on the object when the con-
veyor belt moves with velocity vF in the positive x-direction and the jet impinges upon
the object at angle α = 0.

d) What is the conveyor speed v∗F when the force on the object is twice as large as in the
non-moving state? In both cases, the angle α is considered α = 0.

Given:
ρ, B, vF , v, α

Hint:

• Check your results for unit and sign plausibility!



Problem 2

a) Momentum equation in the x-direction (conveyor
belt at rest):
dIx
dt

= ρv2 cos(α)BT = Fx

⇒ Fx
T

= ρv2 cos(α)B

Force onto the object:

F
′
x = −Fx = −ρv2 cos(α)B

F
′
y

T
= 0

b) Deflection without losses:

Bernoulli from 0 to 1 and from 0 to 2:

alpha

x

y

v

v1

v2

1

2

0

F

⇒ pa +
ρ

2
v2 = pa +

ρ

2
v2

1 = pa +
ρ

2
v2

2

⇒ v = v1 = v2

Continuity equation:

vB = v1B1 + v2B2 ⇒ B = B1 +B2

Momentum equation in the y-direction:
Iy
dt

= ρv2 sin(α)BT + ρv2B1T − ρv2B2T

v2 sin(α)B + v2B1 − v2(B −B1) = 0

(sin(α)− 1)B + 2B1 = 0

B1 =
B

2
(1− sin(α))

B2 =
B

2
(1 + sin(α))



c) moving conveyor belt:

x

y

vr

vr

vr

vf

vf

Momentum equation in the x-direction for
the moving control surface:

DIx
dt

=

∫
ρva,x(~vr · ~n)dA = Fx

= ρvvrB + ρvF vr
B

2
+ ρvF vr

B

2
=
Fx
T

vr = vF − (−v)
Fx
T

= ρv(v + vF )B + ρvF (v + vF )B

Fx
T

= ρ(v + vF )
2B

Force onto the object:

F
′
x = −Fx = −ρ(v + vF )

2B

F
′
y

T
= 0

d) Fx,c = 2Fx,a

ρ(v + v∗F )2B = 2ρv2B ⇒ (v + v∗F )2 = 2v2

v∗F
2 + 2vv∗F − v2 = 0⇒ v∗F = −v ±

√
2v

Since vF > 0:

v∗F = v(
√

2− 1)



Problem 3 (14 Points)

A fluid is transported by an inclined conveyor belt. The belt moves with the velocity uB. The
ambient pressure pa is constant. A fully developed laminar flow of thickness δ is established.

𝛿

uB

𝑦 𝑥

𝑔

𝜌, 𝜂

𝛼

uL𝜌𝐿, 𝑝𝑎

First, assume that the friction with the ambient air is negligible.

a) Formulate the equilibrium of forces in the flow direction for a fluid element and simplify
it to formulate the differential equation for the shear stress.

b) Determine the velocity profile u(y) and the shear stress profile τ(y).

c) Determine the transported volume flux per depth extent T .

The transported volume flux is now to be increased at constant belt speed. For this purpose,
an additional air flow with the mean constant velocity uL in the x-direction is used. The shear
stress at the phase interface can be described approximately by τ = 1

2
cfρLu

2
L. The velocity

distribution of the air flow is to be neglected.

d) Determine the velocity of the air uL such that the volume flux is doubled.

e) Carefully draw the two velocity profiles from b) and d) into one diagram.

Given: g, η, ρ, uB, δ, α, ρL, cf

Hints:

• The fluid exhibits Newtonian shear behaviour.

• Check your results for unit and sign plausibility!



Problem 3

a) Force balance in the x-direction:

𝑝

𝑝 + 𝑑𝑝

𝜏

𝜏 + 𝑑𝜏

𝑔

𝛼

(p− (p+
dp

dx
dx))dy + (τ − (τ +

dτ

dy
))dx− ρg sinαdxdy = 0

−dp
dx
dxdy − dτ

dy
dxdy − ρg sinαdxdy = 0

Free surface: dp
dx

= 0

⇒ dτ

dy
= −ρg sinα

b) 1st integration:∫ τo

τ

dτ = −
∫ δ

y

ρg sinαdy

With τo = 0:

⇒ τ = −ηdu
dy

= ρg sinα(δ − y)

2nd integration:∫ u

uB

du = −ρg sinα

η

∫ y

0

(δ − y)dy

⇒ u(y) = uB +
ρg sinα

η
(
1

2
y2 − δy)

c) Volume flux per depth extent:
V̇

T
=

∫ δ

0

u(y)dy

V̇

T
= uBδ +

ρg sinα

η
(
1

6
δ3 − 1

2
δ3)

⇒ V̇

T
= uBδ −

ρg sinα

3η
δ3



d) 1st integration as in b):

τ(y) = τo + ρg sinα(δ − y) = −ηdu
dy

2nd integration:∫ u

uB

du =

∫ y

0

−τo
η
− ρg sinα

η
(δ − y)dy

⇒ u(y) = uB −
τo
η
y +

ρg sinα

η
(
1

2
y2 − δy)

Volume flux per depth extent:
V̇

T
=

∫ δ

0

u(y)dy

V̇

T
= uBδ −

τo
2η
δ2 +

ρg sinα

η
(
1

6
δ3 − 1

2
δ3)

⇒ V̇

T
= uBδ −

τo
2η
δ2 − ρg sinα

3η
δ3

V̇

T
=
V̇alt
T
− τo

2η
δ2 = 2

V̇alt
T

τo
2η
δ2 = −uBδ +

ρg sinα

3η
δ3

τo = −2ηuB
δ

+
2

3
ρg sinαδ = −1

2
cfρLu

2
L

⇒ uL =

√
2

cfρL
(
2ηuB
δ
− 2

3
ρg sinαδ)

e) Sketch:

𝑦

𝑢(𝑦)

𝛿

𝑢𝐵

b) d)



Problem 4 (13 Points)

The superposition of a source, a sink, and a parallel flow at the velocity U∞ under an angle of
attack α is considered.

x

y

L

Source

L

Sink

U∞

α

a) Formulate the complex potential function F (z) to represent the problem described. Indi-
cate the signs of the constants in the elementary functions.

b) Determine the resulting velocity components u(x, y) and v(x, y) using the conjugate com-
plex velocity w.

It is known for the angle of attack α = 0 that a stagnation point is located at xs = −2L and that
the corresponding stagnation point streamline is symmetrical to the y-axis.

c) Determine the strength of the source and the sink.

d) Calculate the positions of the stagnation points for the angle of attack α = π and sketch
qualitatively the corresponding flow field.

Given:

U∞, L, α

Known complex potential functions:

Parallel flow: F (z) = (u∞ − iv∞)z

Potential vortex: F (z) = − iΓ
2π

ln z

Source/Sink: F (z) = E
2π

ln z

Stagnation point flow: F (z) = az2

Dipole: F (z) = M
2πz

Hints:

• z = x+ iy = r · eiφ = r(cosφ+ i sinφ)

•
1

z ± a
=

1

(x± a) + iy

• Check your results for unit and sign plausibility!



Problem 4 (13 Points)

a) using u∞ = U∞ cos(α), v∞ = U∞ sin(α) as well as the source strength EQ > 0 and sink
strength ES < 0 follows 1

1

F (z) = U∞ [cos(α)− i sin(α)] z +
EQ
2π

ln(z + L) +
ES
2π

ln(z − L) 1
2

b) Using the definition of the conjugate complex velocity follows

w = u− iv =
dF

dz
= U∞ [cos(α)− i sin(α)] +

EQ
2π

1

z + L
+
ES
2π

1

z − L 1
3

Expansion by the conjugate complex denominator

1

z ± L
=

1

(x± L) + iy
=

1

(x± L) + iy

(x± L)− iy

(x± L)− iy
=

(x± L)− iy

(x± L)2 + y2

the expression can be simplified and decomposed into real and imaginary parts.

dF

dz
=

[
U∞ cos(α) +

EQ
2π

x+ L

(x+ L)2 + y2
+
ES
2π

x− L
(x− L)2 + y2

]
︸ ︷︷ ︸

=u(x,y)

1
4

−i

[
U∞ sin(α) +

EQ
2π

y

(x+ L)2 + y2
+
ES
2π

y

(x− L)2 + y2

]
︸ ︷︷ ︸

=v(x,y)

1
5

c) For α = 0, it follows from v(xs, ys) = 0 or due to symmetry reasons that the stagnation
points lie on ys = 0 and the magnitude of the strenght must be equal, i.e., |EQ| = |ES| =:
E, where EQ = E and ES = −E. Using u(xs = −2L, ys = 0) = 0, E is determined to
be

u(xs = −2L, ys = 0, α = 0) = U∞ +
E

2π

−L
(−L)2

− E

2π

−3L

(−3L)2
= 0 1

6

⇒ 0 = U∞2πL+ E

(
−1 +

1

3

)
⇒ E = 3πU∞L 1

7

d) Using α = π : sin(α) = 0, cos(α) = −1 and E = EQ = −ES it follows

v(x, y) =
E

2π
y

[
1

(x+ L)2 + y2
− 1

(x− L)2 + y2

]
!

= 0

y = 0 ∨
[

1

(x+ L)2 + y2
− 1

(x− L)2 + y2

]
= 0

⇒[(x− L)2 + y2]− [(x+ L)2 + y2] = 0 ⇒ x = 0 1
8



Checking the zeros for the u component 1
9

u(x, y) = −U∞ +
E

2π

[
x+ L

(x+ L)2 + y2
− x− L

(x− L)2 + y2

]
u(x = 0, y) = −U∞ +

E

2π

[
L

(L)2 + y2
− −L

(−L)2 + y2

]
!

= 0

⇒ 0 = −U∞ +
E

π

L

L2 + y2
⇒ y2 =

EL

πU∞
− L2 c)

= 2L2

⇒ (xsp, ysp)1,2 = (0,±
√

2L) 1
10

u(x, y = 0) = −U∞ +
E

2π

[
x+ L

(x+ L)2 + y2
− x− L

(x− L)2 + y2

]
!

= 0

⇒ 0 = −U∞ +
E

2π

[
x+ L

(x+ L)2
− x− L

(x− L)2

]
= −U∞ +

E

2π

[
(x− L)− (x+ L)

(x+ L)(x− L)

]
= −U∞ +

E

π

[
−L

x2 − L2

]
→ x2 = L2 − EL

πU∞

c)
= −2L2

⇒ x = ±
√
−2L2 → Physically meaningless, since imaginary 1

11

The two stagnation points are (xsp, ysp)1,2 = (0,±
√

2L).

2 1 0 1 2
x/L

3

2

1

0

1

2

3

y/
L

stag. points Source/Sink

1
12

1
13



Problem 5 (11 Points)

The flow at velocity u∞ of an incompressible Newtonian fluid (density ρ, viscosity η) over a
conveyor belt of length L is considered. The belt moves in the direction of the outer flow with
the velocity uB = Ku∞.

x

y

u∞, ρ, η

uB

δ(x)

L

Belt

Cylinder

The following approach is assumed to approximate the velocity profile in the laminar boundary
layer.

u(x, y)

u∞
= a0 + a1

(y
δ

)
+ a2

(y
δ

)2

.

a) Determine the velocity profile u(y/δ) in the boundary layer.

b) Calculate the distribution of the boundary layer thickness δ(x).

c) What is the friction force per width FR/B acting on the belt?

d) Give two technical methods that lead generate turbulent boundary layer. How does this
affect the friction force compared to a laminar boundary layer? Justify your answer and
sketch qualitatively the two velocity profile shapes.

Given:

L, u∞, ρ, η, uB = Ku∞, B

Hints:

• von Kármán integral equation

dδ2

dx
+

1

ua

dua
dx

(2δ2 + δ1)− τW
ρu2

a

= 0

• Check your results for unit and sign plausibility!



Problem 5 (11 Points)

a) Using three boundary conditions and the given ratio uB
u∞

= K the unknowns ai can be
determined
no-slip:

y

δ
= 0 : u = uB → a0 = uB

u∞
= K

edge of boundary layer:
y

δ
= 1 : u = u∞ → a1 + a2 = 1− uB

u∞
= 1−K

wall compatibility condition:
y

δ
= 0 : η

∂2u

∂y2

∣∣∣∣
y=0

=
∂p

∂x
here
= 0 → a2 = 0

⇒ u

u∞
= K + (1−K)

(y
δ

)
1

1

b) By ua ≡ u∞ → dua
dx

= 0 the integral relation of Kármán simplifies. Via the wall shear
stress and the momentum thickness, δ can be determined.

δ2 =

∫ δ

0

u

u∞

(
1− u

u∞

)
dy = δ

∫ 1

0

[
u

u∞
−
(
u

u∞

)2
]
d
(y
δ

)
1

2

= δ

∫ 1

0

[(
K + (1−K)

(y
δ

))
−
(
K + (1−K)

(y
δ

))2
]
d
(y
δ

)
= δ

∫ 1

0

[(
K + (1−K)

(y
δ

))
−
(
K2 + 2K(1−K)

(y
δ

)
+ (1−K)2

(y
δ

)2
)]

d
(y
δ

)
= δ

∫ 1

0

[
(K −K2) + (1− 3K + 2K2)

(y
δ

)
− (1−K)2

(y
δ

)2
]
d
(y
δ

)
= δ

[
(K −K2)

(y
δ

)
+

1

2
(1− 3K + 2K2)

(y
δ

)2

− 1

3
(1−K)2

(y
δ

)3
]∣∣∣∣1

0

= δ

[
1

6
+

1

6
K − 1

3
K2

]
=
δ

6

[
1 +K − 2K2

]︸ ︷︷ ︸
:=φ

1
3

τW = −τ(y = 0) = η
∂u

∂y

∣∣∣∣
y=0

= ηu∞(1−K)
1

δ
1

4
dδ2

dx
− τW
ρu2
∞

= 0 1
5

⇒ φ

6

dδ

dx
=

1

ρu2
∞

ηu∞(1−K)

δ

⇒
∫
δdδ =

6η(1−K)

φρu∞

∫
dx with δ(x = 0) = 0 follows

⇒ δ(x) =

√
12η(1−K)

φρu∞
x 1

6



c)

FR
B

=

∫ L

0

τW (x)dx 1
7

=

∫ L

0

ηu∞(1−K)

δ(x)
dx =

∫ L

0

ηu∞(1−K)

1

√
φρu∞

12η(1−K)x
dx

= ηu∞(1−K)

√
φρu∞

12η(1−K)
2
√
L 1

8

d) The change from a laminar to a turbulent boundary layer can be achieved by imposing
disturbances to the flow. Technical methods are e.g. trip wires, roughness changes of the
surface or vortex generators. 1

9
In the case of a turbulent boundary layer, higher momentum is transported to the near wall region
due to additional mixing movements, which makes the mean velocity profile fuller and in-

creases the frictional force. 1
10

u/u∞

y/δ

1

1
0

laminar
turbulent

1
11



Problem 6 (7 Points)

a) Using Reynolds averaging, show that fg = fg + f ′g′ holds.

b) In a laminar flow, two fluids are layered normal to the flow direction. The fluids have the
viscosities η1 and η2. What conditions must be fulfilled at the interface for the velocity
component in the flow direction?

c) Explain the concept of the viscous sublayer.

d) Why is it possible to achieve a different number of parameters for the same physical
problem using Buckingham’s Π theorem instead of the method of differential equations?



Problem 6

a) Decomposition of the function in f = f + f
′

f =
1

T

∫
T

fdt
1

T

∫
T

f
′
dt = 0

fg = (f + f ′)(g + g′) = fg + f ′g + fg′ + f ′g′

⇒ fg = fg + f ′g′

b) Kinematics: u1 = u2

Force balance: τ1 = τ2 ⇒ η1
du1
dy

= η2
du2
dy

c) The viscous sublayer is a very thin layer in the vicinity of the wall, in which the laminar
shear stress dominates the turbulent shear stress.

d) Via Buckingham’s Π-theorem one obtains the maximum number of parameters of a phy-
sical problem. Since there is more information in the differential equation, the number of
parameters obtained by the method of differential equations is less than or equal to the
number of parameters obtained by Buckingham’s Π-theorem. 1

1


