

Verformung durch äußere Kraft

Fluid : Stoff, der sich kontinuierlich verformt, wobei die Schubkraft beliebig klein sein kann.

- **Festkörper :** Stoff, der sich nicht kontinuierlich verformt
 - \Rightarrow fließt nicht

Materialien, die weder reine Festkörper noch reine Fluide sind

Bewegung der Moleküle 🗁 Mechanik der Fluide

JEDOCH : Interesse am durchschnittlichen Verhalten

gewähltes Mittelungsvolumen

- << Dimension der Probleme
- >> Abstand der Moleküle
- > Var. im Strömungsfeld entspricht dem Durchschnittswert der Moleküle im Volumen
- Annahme : Sehr viele im Volumen
 - kontinuierliche Verteilung der Charakteristika
 - ⇒ Kontinuumsmechanik

Kinematik der Fluide

Ablauf der Bewegung, später Ursache der Bewegung

Eulersche und Lagrangesche Strömungsbeschreibung

Lagrange: Bewegung des einzelnen Partikels bestimmt die Fluideigenschaften

Unablyg. Var. t, $\vec{r}(t=0) = \vec{r_0} = x_0 \vec{i} + y_0 \vec{j} + z_0 \vec{k}$

Lage des Teilchens		$\vec{r}\left(\vec{r}_{0},t\right)$
Strögs.var. F geg durch		$F(\vec{r}_0,t)$
Euler:		Feldkonzept
Zeitpunkt		$t = t_0 = konst$
Fluideigenschaft		P = P(x, y, z)
	allgemein gilt für eine Var. F	
	$F(\vec{r},t)$ mit	$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$
\Rightarrow	z. Bsp. für die Geschwindigkeit \vec{v}	
sofern	u(x,y,z,t)	
	v(x,y,z,t)	
	w(x,y,z,t)	bekannt,
dann auch	_	_, →
	$\vec{v} = u \vec{i} + $	$v\vec{j} + wk$

Unterschied: Euler - Lagrange

Bsp. : Kaminrauch

Euler Methode :

Temp.messgerät in $0 \rightarrow T(x_0, y_0, z_0, t)$ mit vielen Messgeräten $\rightarrow T(x, y, z, t)$ Temp. eines Teilchens abhängig von t ist unbekannt

Lagrange Methode :

Temp.messgerät sitzt auf A \rightarrow $T_A = T_A(t)$ $T_A = f(Ort)$ unbekannt, sofernOrt = g(t)unbestimmt

In der Fluidmechanik wird im Allgemeinen auf das Euler Konzept zurückgegriffen

Stationäre und instationäre Strömungen

instationär bzw. zeitabhängig:

Variable = f(x, y, z, t)

stationär bzw. zeitunabhängig:

Variable = $f(x, y, z) \neq g(t)$

Instationäre Strömungen : Start- und Anfahrvorgänge

quasistationär bzw. 'wie stationär ': Änderung aufgrund von t **sehr langsam** Bemerkung : Beschleunigung aufgrund von A = f(x,y,z) in stationären Strömungen

Stromlinie, Bahnlinie, Rauchlinie

Stromlinie : Kurve, die tangential zum Geschwindigkeitsvektorfeld verläuft

Stromröhre : Stromlinien, die durch eine geschlossene Kurve G gehen

Stromfaden : Stromröhre mit infinitesimalem Querschnitt

Bahnlinie : Trajektorie eines individuellen Partikels über der Zeit

Stat. Strömung : Bahnlinie = Stromlinie

Instat. Strömung : Bahnlinie ≠ Stromlinie

Rauchlinie : Linie der Fluidpartikel, die denselben Ort passiert haben.

Stat. Strömung : Stromlinie = Bahnlinie = Rauchlinie

Bezugssystem

stat. oder instat. kann f (Bezugssystem) sein

fester Beobachter (instat. Strömung) mitbewegter Beobachter (stat. Strömung)

fester Beobachter ----- intstatio

intstationäre Strömung

Stromlinie : Momentaufnahme

Bahnlinie : Verlauf über die Zeit

Visualisierung von Strom- und Bahnlinien zum Bsp. mittels reflektierendem Material auf der Fluidoberfläche.

Wichtig: Stromlinien haben keinen Knick.

Kontrollvolumen und Kontrollsystem

Fundamentale physikalische Gesetze auf Kontrollsystemen (KS) und Kontrollvolumina (KV) anwendbar

- KS: Sammlung einer Substanz gleichbleibender Identität
- KV : festgelegtes Volumen im Raum ____ geometrische Größe

Im Allgemeinen ist man in der Fluidmechanik u. a. an Kräften interessiert, die von der Strömung auf Propeller, Flugzeuge Autos etc. wirken.

Veränderungen des Systems stehen nicht im Vordergrund der Analyse

 \implies Im Allgemeinen Analyse mittels KV !

typische KV :

verformendes Kontrollvolumen Grundgesetze der Strömungsmechanik sind ursprünglich für KS formuliert

- → Masse eines Systems ist konstant
- \rightarrow zeitliche Änderung des Impulses eines Systems ist gleich der ΣF auf das System

Reynoldssche Transporttheorem notwendig, um von der KS-Form auf die KV-Form zu gelangen

Das Reynoldssche Transporttheorem

Zeitpunkt *t* : System enthält Fluid im KV

Zeitpunkt $t + \Delta t$: System besteht aus (KV-I)+II

B sei eine beliebige Größe des Systems (z. Bsp. die Masse m). Dann gilt zum Zeitpunkt t,

$$B_{sys}(t) = B_{KV}(t)$$

da System und Fluid im Kontrollvolumen übereinstimmen. Weiterhin ist

$$B_{sys}(t + \Delta t) = B_{KV}(t + \Delta t) - B_I(t + \Delta t) + B_{II}(t + \Delta t)$$

bzw. die zeitliche Änderung von B ist

$$\frac{\Delta B_{sys}}{\Delta t} = \frac{B_{sys}(t + \Delta t) - B_{sys}(t)}{\Delta t}$$
$$= \frac{B_{KV}(t + \Delta t) - B_{KV}(t)}{\Delta t} - \frac{B_I(t + \Delta t)}{\Delta t} + \frac{B_{II}(t + \Delta t)}{\Delta t}$$

$$=\frac{\partial B_{KV}}{\partial t}+\dot{B}_{out}-\dot{B}_{in}$$

Zusammenhang zwischen der zeitlichen Änderungsrate von B für das KS und das KV

 B_{out}, B_{in} : Nettostrom von B aus dem bzw. in das KV.

allgemeine Darstellung:

- feste Kontrollfläche und Systemgrenze bei *t*
- ---- Systemgrenze bei $t + \Delta t$

Bestimmung von B_{out} mittels Integration über ΔA von KF_{out}

 KF_{out} : trennt Gebiet II und KV

Kontrollfläche von \dot{B}_{out}

 \vec{n} : nach außen gerichtete Normale zur Oberfläche

 Θ : Winkel zwischen \vec{v} und \vec{n}

B = mb

Fluss von *B* über ΔA in Δt $\Delta B_{out} = b\rho\Delta V = b\rho(\|\vec{v}\|\cos\Theta\Delta A)$

Als Strom erhält man

$$\Delta \dot{B}_{out} = \lim_{\Delta t \to 0} \left(\frac{\rho b \Delta V}{\Delta t} \right) = \rho b \| \vec{v} \| \cos \Theta \ \Delta A$$

bzw. nach Integration über KF_{out}

$$\dot{B}_{out} = \int_{KF_{out}} d\dot{B}_{out} = \int_{KF_{out}} \rho b \|\vec{v}\| \cos \Theta \, dA$$
$$\dot{B}_{out} = \int_{KF_{out}} \rho b \vec{v} \cdot \vec{n} \, dA$$

Für die Einströmung über die Kontrollfläche KF_{in} errechnet sich

$$\dot{B}_{in} = -\int_{KF_{in}} \rho b \vec{v} \cdot \vec{n} \, dA$$

$$\dot{B}_{out} - \dot{B}_{in} = \int_{KF_{out}} \rho b \, \vec{v} \cdot \vec{n} \, dA - \left[-\int_{KF_{in}} \rho b \, \vec{v} \cdot \vec{n} \, dA \right] = \int_{KF} \rho b \, \vec{v} \cdot \vec{n} \, dA$$

mit
$$B_{KV} = \int_{KV} \rho b \, dV \qquad \text{folgt}$$
$$\frac{dB_{sys}}{dt} = \frac{\partial}{\partial t} \int_{KV} \rho b \, dV + \int_{KF} \rho b \, \vec{v} \cdot \vec{n} \, dA$$

Reynoldssches Transporttheorem für ein ruhendes, unverformbares Kontrollvolumen

Erhaltung der Masse

Die Masse des Systems bleibt bei Bewegung durch das Strömungsfeld konstant

$$B = mb$$
 , für $b = 1$

$$\frac{dm_{sys}}{dt} = \frac{\partial}{\partial t} \int_{KV} \rho \, dV + \int_{KF} \rho \, \vec{v} \cdot \vec{n} \, dA = 0$$

integrale Form

differentielle Form über Gaußschen Satz oder am Element

Zeitliche lokale Massenänderung :

$$\frac{\partial \rho}{\partial t} \; \Delta x \; \Delta y \; \Delta z$$

Massenfluss über die Oberfläche des Elements (in x-Richtung) :

Nettomassenfluss in x-Richtung

$$\left(\rho u + \frac{\partial(\rho u)}{\partial x}\frac{\Delta x}{2}\right)\Delta y \Delta z - \left(\rho u - \frac{\partial(\rho u)}{\partial x}\frac{\Delta x}{2}\right)\Delta y \Delta z = \frac{\partial(\rho u)}{\partial x}\Delta x \Delta y \Delta z$$

In y- und z-Richtung erhält man

differentielle Form der Kontinuitätsgleichung

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho \ u)}{\partial x} + \frac{\partial (\rho \ v)}{\partial y} + \frac{\partial (\rho \ w)}{\partial z} = 0$$

bzw.

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \ \vec{v}) = 0$$

mit

$$\vec{\nabla}(\bullet) = \frac{\partial(\bullet)}{\partial x} \, \vec{i} + \frac{\partial(\bullet)}{\partial y} \, \vec{j} + \frac{\partial(\bullet)}{\partial z} \, \vec{k}$$

 \Rightarrow

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + u\frac{\partial\rho}{\partial x} + v\frac{\partial\rho}{\partial y} + w\frac{\partial\rho}{\partial z}$$

$$= \frac{\partial \rho}{\partial t} + \vec{v} \cdot \nabla \rho$$

folgt :
$$\frac{d\rho}{dt} + \rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) = 0$$

bzw.
$$\frac{d\rho}{dt} + \rho \vec{\nabla} \cdot \vec{v} = \frac{d\rho}{dt} + \rho \, div \, \vec{v} = 0$$

Sonderfälle :

• stat. Strömung $\frac{\partial}{\partial t} \to 0$

$$\vec{\nabla} \cdot (\rho \ \vec{v}) = \ \frac{\partial(\rho \ u)}{\partial x} + \frac{\partial(\rho \ v)}{\partial y} + \frac{\partial(\rho \ w)}{\partial z} = 0$$

• Inkompressibles Fluid ρ = konstant

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

$$\vec{\nabla} \cdot \vec{v} = 0$$

Erhaltung des Impulses

 $ec{F}$: Auf die Fluidmasse wirkende resultierende Kraft

$$\vec{I} = \int_{Sys} \vec{v} \, dm$$
 : Impuls

Anwendung auf ein differentielles Massesystem:

$$\Delta \vec{F} = \frac{d(\vec{v}\,\Delta m)}{dt}$$

 $\Delta m_{sys} = \text{konstant}$

$$\Delta \vec{F} = \Delta m \frac{d\vec{v}}{dt} = \Delta m \vec{a}$$

 $\Delta \vec{F}$: Oberflächen- und Volumenkräfte

Volumenkraft : Gewichtskraft maßgeblich

in kartesischen Koordinaten:

$$\Delta F_{bx} = \Delta mg_x$$
$$\Delta F_{by} = \Delta mg_y$$
$$\Delta F_{bz} = \Delta mg_z$$

Oberflächenkraft:

Element ↔ Umgebung

Normalspannung:

$$\sigma_n = \lim_{\Delta A \to 0} \frac{\Delta F_n}{\Delta A}$$

Schubspannung:

$$\tau_{1} = \lim_{\Delta A \to 0} \frac{\Delta F_{1}}{\Delta A}$$
$$\tau_{2} = \lim_{\Delta A \to 0} \frac{\Delta F_{2}}{\Delta A}$$

die übliche Zeichenkonvektion gilt

Bedeutung der Indizes :

- *S*_{*ij*} : *i* Richtung der Normalen der Ebene
 - *j* Richtung der Spannung

Spannungen auf 3 orthogonalen, durch einen Punkt gehende Ebenen definieren den Spannungszustand eindeutig

Oberflächenkräfte (nicht vollständig):

Summation liefert die Komponenten der resultierenden Oberflächenkraft:

$$\Delta \vec{F}_S = \Delta F_{Sx} \,\vec{i} + \Delta F_{Sy} \,\vec{j} + \Delta F_{Sz} \,\vec{k}$$

Kräfte in x- / y- / z-Richtung:

$$\Delta F_{Sx} = \left(\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z}\right) \Delta x \Delta y \Delta z$$
$$\Delta F_{Sy} = \left(\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z}\right) \Delta x \Delta y \Delta z$$
$$\Delta F_{Sz} = \left(\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z}\right) \Delta x \Delta y \Delta z$$

ergibt
$$\vec{v} = u\vec{i} + v\vec{j} + w\vec{k}$$

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = \rho g_x + \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} \qquad X$$

$$\rho\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) = \rho g_y + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} \qquad Y$$

$$\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) = \rho g_z + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} \qquad Z$$

Kinematik des Fluidelements

Aufgabe : Spannungen durch Geschwindigkeitskomponenten ausdrücken

Bewegung eines Elements

Anderung seiner Lage und seiner Form

Bestimmung der Verformung mittels der relativen Bewegung zwischen 2 Punkten *I* und *II*

 $d\vec{v}$: Geschwindigkeitsänderung

 $d\vec{v}$ in Komponentenschreibweise

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz$$
$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy + \frac{\partial v}{\partial z} dz$$
$$dw = \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial y} dy + \frac{\partial w}{\partial z} dz$$

Um den Zusammenhang mit Translation, Rotation, Dehnung und Scherung zu erkennen, wird $d\vec{v}$ umgeschrieben

$$du = \dot{\varepsilon}_{x} dx + \dot{\varepsilon}_{xy} dy + \dot{\varepsilon}_{xz} dz + \omega_{zx} dz - \omega_{xy} dy$$
$$dv = \dot{\varepsilon}_{yx} dx + \dot{\varepsilon}_{y} dy + \dot{\varepsilon}_{yz} dz + \omega_{xy} dx - \omega_{yz} dz$$
$$dw = \dot{\varepsilon}_{zx} dx + \dot{\varepsilon}_{zy} dy + \dot{\varepsilon}_{z} dz + \omega_{yz} dy - \omega_{zx} dx$$

Der Vergleich beider Gleichungssysteme ergibt folgende Definitionen für $\dot{\mathcal{E}}_i$ und $\dot{\mathcal{E}}_{ij}$ bzw. \mathcal{W}_{ij}

$$\dot{d}_{ij} = \begin{pmatrix} \dot{\varepsilon}_x & \dot{\varepsilon}_{xy} & \dot{\varepsilon}_{xz} \\ \dot{\varepsilon}_{yx} & \dot{\varepsilon}_y & \dot{\varepsilon}_{yz} \\ \dot{\varepsilon}_{zx} & \dot{\varepsilon}_{zy} & \dot{\varepsilon}_z \end{pmatrix} = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) & \frac{1}{2} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \\ \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \frac{\partial v}{\partial y} & \frac{1}{2} \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \\ \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial x} \right) & \frac{\partial w}{\partial z} \end{pmatrix}$$

$$\omega_{xy} = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$$
$$\omega_{yz} = \frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right)$$
$$\omega_{zx} = \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right)$$

Bedeutung von $\dot{\mathcal{E}}_i$, $\dot{\mathcal{E}}_{ij}$, \mathcal{O}_{ij} ?

Unverformtes Element bewegt sich in der Strömung

Translation:

Rotation:

$$d\varphi = \frac{\partial v}{\partial x}dt = -\frac{\partial u}{\partial y}dt$$

$$\Rightarrow \qquad \text{Zeitliche Winkeländerung } \dot{\varphi} = \frac{d\varphi}{dt} \quad \text{aus dem arithmetischen Mittel} \\ \omega_z = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) = \omega_{xy}$$

 \Rightarrow

Drehung um z-Achse

In 3D erhält man :

$$\omega_x = \frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) = \omega_{yz}$$
$$\omega_y = \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) = \omega_{zx}$$

Dreh- oder Wirbelvektor $\vec{\omega}$

$$\vec{\omega} = \omega_x \vec{i} + \omega_y \vec{j} + \omega_z \vec{k}$$

 \Rightarrow ω_{ij} - Terme : Rotation des unverformten Elements

Relative Volumenänderung (Volumendilatation) $\frac{1}{\Delta V} \frac{d(\Delta V)}{dt}$

$$\frac{1}{\Delta V}\frac{d(\Delta V)}{dt} = \frac{1}{\Delta V} \left\{ \left[\Delta x + \frac{\partial u}{\partial x} \Delta x \, dt \right] \cdot \left[\Delta y + \frac{\partial v}{\partial y} \Delta y \, dt \right] \cdot \left[\Delta z + \frac{\partial w}{\partial z} \Delta z \, dt \right] - \Delta x \Delta y \Delta z \right\} \frac{1}{dt}$$

$$\frac{1}{\Delta V}\frac{d(\Delta V)}{dt} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = \vec{\nabla} \cdot \vec{v} = div \, \vec{v}$$

→ Kontinuitätsgleichung für inkompr. Fluide

Rechteck Scherung Parallelepiped

$$d \gamma = d \alpha + d \beta$$

Dehnungsgeschwindigkeit entspricht der zeitlichen Dehnungsänderung pro Kantenlänge

$$\dot{\varepsilon}_x = \frac{\partial u}{\partial x}$$
, $\dot{\varepsilon}_y = \frac{\partial v}{\partial y}$, $\dot{\varepsilon}_z = \frac{\partial w}{\partial z}$

entspricht den Hauptdiagonalen der Matrix d_{ij}

$$d \ \alpha = \frac{\partial v}{\partial x} dt$$
$$d \ \beta = \frac{\partial u}{\partial y} dt$$

$$\frac{d\gamma}{dt}:\left(\frac{d\alpha}{dt}\right);\left(\frac{d\beta}{dt}\right)$$

gesamte Winkeländerung pro Zeit

Schergeschwindigkeit $\dot{\gamma}_{ij}$ über arithmetische Mittelung

$$\dot{\gamma}_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$
$$\dot{\gamma}_{yz} = \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)$$
$$\dot{\gamma}_{zx} = \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial z} \right)$$

Vergleiche mit
$$d_{ij} - Matrix$$
 :
 $\implies \dot{\mathcal{E}}_{ij} = \dot{\gamma}_{ij} - \text{Terme}$

$$\Rightarrow d_{ij}$$
 – Matrix : enthält **Dehnung** und **Scherung**

 \implies Tensor der Deformation

Spannungstensor au_{ij} in der Impulserhaltung

Zusammenhang zwischen τ_{ij} und \dot{d}_{ij} durch Newtonschen Reibungsansatz :

Tangentiale Spannung ~ Schergeschwindigkeit

und mittels Isotropie des Elements

 $\dot{\mathcal{E}}_x, \dot{\mathcal{E}}_y, \dot{\mathcal{E}}_z$ und $div\vec{v}$ \longrightarrow viskositätsbedingte Normalspannungen

Ansatz:

$$\sigma_{xx} = -p + 2\eta \dot{\varepsilon}_{x} + \lambda \, div \, \vec{v} \qquad \qquad \tau_{xy} = \tau_{yx} = 2\eta \, \dot{\gamma}_{xy}$$

$$\sigma_{yy} = -p + 2\eta \dot{\varepsilon}_{y} + \lambda \, div \, \vec{v} \qquad \qquad \tau_{yz} = \tau_{zy} = 2\eta \, \dot{\gamma}_{yz}$$

$$\sigma_{zz} = -p + 2\eta \dot{\varepsilon}_{z} + \lambda div \, \vec{v} \qquad \qquad \tau_{zx} = \tau_{xz} = 2\eta \, \dot{\gamma}_{zx}$$

Die Größen η und λ sind Proportionalitätsfaktoren Die Normalspannungen werden i. a. umformuliert

$$\sigma_{yy} = -p + \eta \left(2\dot{\varepsilon}_y - \frac{2}{3} div \,\vec{v} \right) + \hat{\eta} div \,\vec{v}$$

$$\sigma_{xx} = -p + \eta \left(2\dot{\varepsilon}_x - \frac{2}{3} div \,\vec{v} \right) + \hat{\eta} div \,\vec{v}$$

$$\sigma_{zz} = -p + \eta \left(2\dot{\varepsilon}_z - \frac{2}{3} div \,\vec{v} \right) + \hat{\eta} div \,\vec{v}$$

$$\eta$$
 : dynamische Viskosität

$$\hat{\eta} = \lambda + \frac{2}{3}\eta$$
 : Volumenviskosität

Stokes 'sche Hypothese : $\hat{\eta} = \lambda + \frac{2}{3}\eta = 0$

inkompressible Strömungen : $div \vec{v} = 0$

 \Rightarrow mittlere Normalspannung σ :

$$\overline{\sigma} = \frac{1}{3} (\sigma_{xx} + \sigma_{yy} + \sigma_{zz}) = -p + \hat{\eta} \, div \, \vec{v}$$

Einsetzen der Normal- und Tangentialspannung

\Rightarrow Navier- Stokes Gleichungen

$$\rho \frac{du}{dt} = \rho g_x - \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left[\eta \left(2 \frac{\partial u}{\partial x} - \frac{2}{3} div \vec{v} \right) \right] + \frac{\partial}{\partial y} \left[\eta \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] + \frac{\partial}{\partial z} \left[\eta \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \right]$$

$$\rho \frac{dv}{dt} = \rho g_y - \frac{\partial p}{\partial y} + \frac{\partial}{\partial y} \left[\eta \left(2 \frac{\partial v}{\partial y} - \frac{2}{3} div \vec{v} \right) \right] + \frac{\partial}{\partial z} \left[\eta \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right] + \frac{\partial}{\partial x} \left[\eta \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right]$$

$$\rho \frac{dw}{dt} = \rho g_z - \frac{\partial p}{\partial z} + \frac{\partial}{\partial z} \left[\eta \left(2 \frac{\partial w}{\partial z} - \frac{2}{3} div \vec{v} \right) \right] + \frac{\partial}{\partial x} \left[\eta \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \right] + \frac{\partial}{\partial y} \left[\eta \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right]$$

inkompressible Strömung, η = konst

$$\rightarrow$$
 div $\vec{v} = 0$

Vereinfachung der 2. Ableitungen

$$\eta \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \frac{\partial}{\partial x} \left[\eta \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right] = \eta \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

⇒ Navier- Stokes Gleichungen für ein ink. Fluid

$$\rho \frac{du}{dt} = \rho g_x - \frac{\partial p}{\partial x} + \eta \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$
$$\rho \frac{dv}{dt} = \rho g_y - \frac{\partial p}{\partial y} + \eta \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right)$$
$$\rho \frac{dw}{dt} = \rho g_z - \frac{\partial p}{\partial z} + \eta \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right)$$

Energiegleichungen

1. Hauptsatz der Thermodynamik :

$$\frac{dQ}{dt} = \frac{dE}{dt} + \frac{dW}{dt}$$

Q: Wärme; E: Energie; W: Arbeit

Volumenelement :

$$\Delta V = \Delta x \Delta y \Delta z$$
$$\Delta m = \rho \Delta V$$

Wärmeleitung nach Fourier :

$$\frac{1}{A}\frac{dQ}{dt} = q = -\lambda \frac{\partial T}{\partial n}$$

 λ : Wärmeleitfähigkeit

Betrachtung für die Fläche $\Delta y \Delta z$ (x-Richtung)

aufgenommene Wärme:

abgegebene Wärme:

$$-\left(\lambda\frac{\partial T}{\partial x} - \frac{\partial}{\partial x}\left(\lambda\frac{\partial T}{\partial x}\right)\frac{\Delta x}{2}\right)\Delta y\Delta z$$
$$\left(\lambda\frac{\partial T}{\partial x} + \frac{\partial}{\partial x}\left(\lambda\frac{\partial T}{\partial x}\right)\frac{\Delta x}{2}\right)\Delta y\Delta z$$

Nettowärmestrom in x- , y- und z-Richtung

$$dQ = dt\Delta V \left\{ \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) \right\}$$

zeitliche Änderung der Gesamtenergie:

$$\frac{dE}{dt} = \rho \Delta V \left[\frac{de}{dt} + \frac{1}{2} \frac{d}{dt} (u^2 + v^2 + w^2) \right]$$

e : massenbezogene innere Energie

Arbeit pro Zeit anhand von σ_{xx} :

$$dW_{\sigma_{xx}} = -\Delta y \Delta z dt \left\{ -\left(u - \frac{\partial u}{\partial x} \frac{\Delta x}{2}\right) \left(\sigma_{xx} - \frac{\partial \sigma_{xx}}{\partial x} \frac{\Delta x}{2}\right) \right\}$$
$$+ \left(u + \frac{\partial u}{\partial x} \frac{\Delta x}{2}\right) \left(\sigma_{xx} + \frac{\partial \sigma_{xx}}{\partial x} \frac{\Delta x}{2}\right) \right\}$$
$$= -\Delta y \Delta z dt \left(u \frac{\partial \sigma_{xx}}{\partial x} + \sigma_{xx} \frac{\partial u}{\partial x}\right) \Delta x$$
$$= -\Delta V dt \frac{\partial}{\partial x} (u \sigma_{xx})$$

analoge Vorgehensweise für den gesamten Spannungstensor :

$$\frac{dW}{dt} = -\Delta V \left[\frac{\partial}{\partial x} \left(u \sigma_{xx} + v \tau_{xy} + w \tau_{xz} \right) + \frac{\partial}{\partial y} \left(u \tau_{yx} + v \sigma_{yy} + w \tau_{yz} \right) + \frac{\partial}{\partial z} \left(u \tau_{zx} + v \tau_{zy} + w \sigma_{zz} \right) \right]$$

Mittels Impulserhaltung (z.B. x-Impuls) :

$$\frac{dW}{dt}\frac{1}{\Delta V} = -u\frac{\partial\sigma_{xx}}{\partial x} - \sigma_{xx}\frac{\partial u}{\partial x}\dots$$
$$-u\frac{\partial\tau_{xy}}{\partial y} - \tau_{xy}\frac{\partial u}{\partial y}\dots$$
$$-u\frac{\partial\tau_{zx}}{\partial z} - \tau_{zx}\frac{\partial u}{\partial z}\dots$$

$$\left(\frac{dE}{dt} + \frac{dW}{dt}\right)\frac{1}{\Delta V} = \rho \frac{de}{dt} - \sigma_{xx} \frac{\partial u}{\partial x} - \tau_{xy} \frac{\partial v}{\partial x} - \tau_{xz} \frac{\partial w}{\partial x}$$
$$- \tau_{yx} \frac{\partial u}{\partial y} - \sigma_{yy} \frac{\partial v}{\partial y} - \tau_{yz} \frac{\partial w}{\partial y}$$
$$- \tau_{zx} \frac{\partial u}{\partial z} - \tau_{zy} \frac{\partial v}{\partial z} - \sigma_{zz} \frac{\partial w}{\partial z}$$

Einführung der Spannungen ergibt die Energiegleichung

$$\rho \frac{de}{dt} + p \, div \, \vec{v} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + \eta \Phi$$

mit Φ für $\hat{\eta} = 0$

$$\Phi = 2 \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial z} \right)^2 \right] + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2$$

$$+ \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right)^2 + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)^2 - \frac{2}{3} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right)^2 > 0$$

$$\Phi = \text{Dissipation sfunktion}$$

mechanische Energie \longrightarrow thermische Energie

Energiegleichungen für ideale Gase

$$e = f(T), \ h = e + \frac{p}{\rho} = f(T)$$

kalorische Zustandsgleichungen:

$$de = \left(\frac{\partial e}{\partial T}\right)_{\frac{1}{\rho}}^{1} dT = c_{v} dT \qquad dh = \left(\frac{\partial h}{\partial T}\right)_{p}^{1} dT = c_{p} dT$$
$$\Rightarrow \frac{de}{dt} = \frac{dh}{dt} - \frac{d\left(\frac{p}{\rho}\right)}{dt} = c_{p} \frac{dT}{dt} - \frac{1}{\rho} \left[\frac{dp}{dt} - \frac{pd\rho}{\rho dt}\right]$$

Kontinuitätsgleichung:

$$-\frac{1}{\rho}\frac{d\rho}{dt} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = div\,\vec{v}$$
$$\implies \rho c_p \frac{dT}{dt} = \frac{dp}{dt} + \left[\frac{\partial}{\partial x}\left(\lambda\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(\lambda\frac{\partial T}{\partial y}\right) + \frac{\partial}{\partial z}\left(\lambda\frac{\partial T}{\partial z}\right)\right] + \eta\Phi$$

Form der Energiegleichung in CFD-Untersuchungen

$$\frac{\partial E}{\partial t} + \frac{\partial}{\partial x} [u(E+p)] + \frac{\partial}{\partial y} [v(E+p)] + \frac{\partial}{\partial z} [w(E+p)] = \frac{\partial}{\partial x} [u\tau_{xx} + v\tau_{xy} + w\tau_{xz} - q_x] + \frac{\partial}{\partial y} [u\tau_{xy} + v\tau_{yy} + w\tau_{yz} - q_y] + \frac{\partial}{\partial y} [u\tau_{xz} + v\tau_{yz} + w\tau_{zz} - q_z]$$

bzw. mit

$$H = h + \frac{\left\|\vec{v}\right\|^2}{2}$$
$$\rho H = p + \rho \left(e + \frac{\left\|\vec{v}\right\|^2}{2}\right) = p + E$$

lauten die räumlichen 1. Ableitungen der linken Seite

$$\frac{\partial}{\partial x}(\rho u H) + \frac{\partial}{\partial y}(\rho v H) + \frac{\partial}{\partial z}(\rho w H)$$

Formen der Erhaltungsgleichungen

Vektorschreibweise unter Berücksichtigung des Nabla-Operators

Masse:

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0$$

oder $\frac{d\rho}{dt} + \rho \vec{\nabla} \cdot \vec{v} = 0$

Impuls:

Spannungstensor τ

$$\tau = \begin{pmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z \end{pmatrix}$$

$$\sigma_{x} = \sigma_{xx} + p = \eta \left(2\dot{\varepsilon}_{x} - \frac{2}{3} div \, \vec{v} \right) + \hat{\eta} div \, \vec{v}$$

$$\sigma_{y} = \sigma_{yy} + p$$

$$\sigma_{z} = \sigma_{zz} + p$$

Formen der Navier-Stokes Gleichungen: \Rightarrow

$$\rho \frac{d\vec{v}}{dt} = \rho \vec{g} - \vec{\nabla} p + \vec{\nabla} \cdot \tau$$

oder:
$$\rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla}) \vec{v} \right) = \rho \vec{g} - \vec{\nabla} p + \vec{\nabla} \cdot \tau$$

oder:
$$\frac{\partial}{\partial t} (\rho \vec{v}) + \vec{\nabla} \cdot (\rho \vec{v} \vec{v}) = \rho \vec{g} - \vec{\nabla} p + \vec{\nabla} \cdot \tau$$

mit $\vec{v} \vec{v}$
$$\vec{v} \vec{v} = \begin{pmatrix} u^2 & uv & uw \\ vu & v^2 & vw \\ wu & wv & w^2 \end{pmatrix}$$

inkompressibles Fluid mit η = konstant:

$$\rho \frac{d\vec{v}}{dt} = \rho \vec{g} - \vec{\nabla} p + \eta \nabla^2 \vec{v}$$

+ stationär

$$\rho \left(\vec{v} \cdot \vec{\nabla} \right) \vec{v} = \rho \vec{g} - \vec{\nabla} p + \eta \nabla^2 \vec{v}$$

Energie

$$E = \rho \left(e + \frac{\left\| \overline{v} \right\|^2}{2} \right)$$
 : Gesamtenergie

$$\frac{\partial E}{\partial t} + \vec{\nabla} \cdot (E\vec{v}) = \rho \vec{g} \cdot \vec{v} - \vec{\nabla} \cdot \vec{q} - \vec{\nabla} \cdot (p\vec{v}) + \vec{\nabla} \cdot (\tau \cdot \vec{v})$$

plus Kontinuitätsgleichung

$$\rho \frac{d}{dt} \left(e + \frac{\left\| \vec{v} \right\|^2}{2} \right) = \rho \vec{g} \cdot \vec{v} - \vec{\nabla} \cdot \vec{q} - \vec{\nabla} \cdot (p \vec{v}) + \vec{\nabla} \cdot (\tau \cdot \vec{v})$$

$$\rho \frac{dH}{dt} = \rho \vec{g} \cdot \vec{v} + \frac{\partial p}{\partial t} - \vec{\nabla} \cdot \vec{q} + \vec{\nabla} (\tau \cdot \vec{v})$$
$$\frac{d}{dt} \left(e + \frac{\|\vec{v}\|^2}{2} \right) = \frac{dH}{dt} - \frac{1}{\rho} \left(\frac{\partial p}{\partial t} + \vec{\nabla} \cdot (p\vec{v}) \right)$$

e : innere Energie

$$\rho \frac{de}{dt} = -\vec{\nabla} \cdot \vec{q} - p\vec{\nabla} \cdot \vec{v} + \tau \cdot \vec{\nabla} \vec{v}$$

mit

$$\tau \cdot \vec{\nabla} \vec{v} = \sigma_x \frac{\partial u}{\partial x} + \tau_{xy} \frac{\partial u}{\partial y} + \tau_{xz} \frac{\partial u}{\partial z} + \tau_{yx} \frac{\partial v}{\partial x} + \sigma_y \frac{\partial v}{\partial y} + \tau_{yz} \frac{\partial v}{\partial z} + \tau_{zx} \frac{\partial w}{\partial x} + \tau_{zy} \frac{\partial w}{\partial y} + \sigma_z$$
$$= \sigma_x \frac{\partial u}{\partial x} + \sigma_y \frac{\partial v}{\partial y} + \sigma_z \frac{\partial u}{\partial z} + \tau_{xy} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) + \tau_{yz} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right) + \tau_{zx} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}\right)$$
$$= \eta \Phi$$

h : innere Enthalpie

$$\rho \frac{dh}{dt} = -\vec{\nabla} \cdot \vec{q} + \frac{dp}{dt} + \tau \cdot \vec{\nabla} \vec{v}$$

bzw. bei idealem Gas:

$$\rho c_p \frac{dT}{dt} = -\vec{\nabla} \cdot \vec{q} + \frac{dp}{dt} + \tau \cdot \vec{\nabla} \vec{v}$$

Hydrostatik

ruhendes Fluid — keine Tangentialspannungen

Kräftegleichgewicht für Oberflächen- und Gewichtskraft

y-Richtung: $(p_1 ds)\sin\Theta - p_3 dz = 0$

z-Richtung:
$$-(p_1 ds)\cos\Theta + p_2 dy - \frac{1}{2}\rho g dy dz = 0$$

$$dz = ds \sin \Theta \implies p_1 = p_3$$

$$dy = ds \cos \Theta$$
$$\implies p_2 - p_1 - \frac{1}{2}\rho_g \, dz = 0$$

Volumen \rightarrow Punkt :

$$dz \to 0 \qquad \Rightarrow \qquad p_1 = p_2$$

- ruhendes Fluid, in einem Punkt; Druck unabhängig von der Richtung
- ⇒ Druck ist eine skalare Größe

räumliche Verteilung des Druckes

Kräftegleichgewicht in x- und y-Richtung:

$$-\left(p + \frac{\partial p}{\partial x}\frac{dx}{2}\right)dy \, dz + \left(p - \frac{\partial p}{\partial x}\frac{dx}{2}\right)dy \, dz = 0$$
$$\left(p - \frac{\partial p}{\partial y}\frac{dy}{2}\right)dx \, dz - \left(p + \frac{\partial p}{\partial y}\frac{dy}{2}\right)dx \, dz = 0$$

$$\Rightarrow \quad \frac{\partial p}{\partial x} = \frac{\partial p}{\partial y} = 0 \qquad p \neq f(x, y)$$

in z-Richtung:

$$\left(p - \frac{\partial p}{\partial z}\frac{dz}{2}\right)dx \, dy - \left(p + \frac{\partial p}{\partial z}\frac{dz}{2}\right)dx \, dy - \rho g \, dx \, dy \, dz = 0$$

$$\Rightarrow \qquad \frac{dp}{dz} = -\rho_g$$

 ρ =konstant, g=konstant

mit
$$p_0 = p(z=0)$$

 $p = p_0 - \rho g z$ $\Rightarrow \qquad p + \rho g z = p_0 = \text{konstant}$

hydrostatische Grundgleichung hydrostatische Grundgleichung für beliebige Beschleunigungsfelder

Oberflächenkräfte in x-, y-, z-Richtung: $dF_x = -\frac{\partial p}{\partial x} dx dy dz$ $dF_y = -\frac{\partial p}{\partial y} dx dy dz$ $dF_z = -\frac{\partial p}{\partial z} dx dy dz$

$$\Rightarrow d\vec{F}_s = dF_x \vec{i} + dF_y \vec{j} + dF_z \vec{k}$$
$$= -\left(\frac{\partial p}{\partial x}\vec{i} + \frac{\partial p}{\partial y}\vec{j} + \frac{\partial p}{\partial z}\vec{k}\right) dx \, dy \, dz$$
$$= -\vec{\nabla} p \, dx \, dy \, dz$$

 $-\vec{\nabla}p - \rho g\vec{k} = \rho \vec{a}$

Newton (2.Gesetz)
$$\sum d\vec{F} = dm \,\vec{a}$$
$$d\vec{F}_s - dG\vec{k} = dm \,\vec{a}$$
$$-\vec{\nabla}p \, dx \, dy \, dz - \rho \, g \, dx \, dy \, dz \,\vec{k} = \rho dx \, dy \, dz \,\vec{a}$$

allg. Bewegungsgleichung ohne Tangentialspgn.

ruhendes Fluid
$$\longrightarrow \frac{dp}{dz} = -\rho g$$

Bsp. 1 :

Herleitung von
$$h = \frac{2\sigma \sin \alpha}{\rho g R}$$

wobei h Flüssigkeitsanstieg, R Radius, σ Oberflächenspannung und α Berührungswinkel bedeutet.

,

Lösung 1 :

Kräftegleichgewicht in z-Richtung :

$$2\pi\sigma R\sin\alpha + p_a\pi R^2 - p_a\pi R^2 - \rho g h\pi R^2 = 0$$
$$\Rightarrow h = \frac{2\sigma\sin\alpha}{\rho g R}$$

barometrische Höhenformel

ideale Gasgleichung :

$$\rho = \frac{p}{RT}$$
$$\frac{dp}{dz} = -\rho g = -\frac{pg}{RT}$$

isotherme Atmosphäre

$$z_{0} < z < z_{1} \qquad T(z) = T_{0} = konst.$$

$$\int_{p_{0}}^{p_{1}} \frac{dp}{p} = \ln \frac{p_{1}}{p_{0}} = -\frac{g}{RT_{0}} \int_{z_{0}}^{z_{1}} dz = -\frac{g}{RT} (z_{1} - z_{0})$$

$$p_{1} = p_{0} \exp \left[-\frac{g}{RT_{0}} (z_{1} - z_{0})\right]$$

weitere Beispiele zur hydrostatischen Grundgleichung

Bsp. 2 :

bzw.

Vakuumpumpe V erzeugt 95% Vakuum

- a) Wasserspiegelhöhe h_1 für einen Atmosphärendruck Pa=0.96 bar
- b) Absolutdruck und Überdruck auf dem Boden des Beckens

Bsp. 3 :

Ein geschlossenes System ist zum Beispiel mit Öl gefüllt. Für die Kolbenflächen gilt A2 >> A1. Gesucht ist der Zusammenhang zwischen F1 und F2.

Lösung 3 :

 $p_1 + \rho g z_1 = p_2 + \rho g z_2$

$$\frac{F_1}{A_1} + \rho g z_1 = \frac{F_2}{A_2} + \rho g z_2 \quad , \quad z_1 = z_2$$
$$F_2 = \frac{A_2}{A_1} \cdot F_1$$

Bestimmung der Dichte einer Messflüssigkeit anhand eines U-Rohres und einer Vergleichsflüssigkeit

Lösung 4 : $p_0 = p_a + \rho_1 g(z - \Delta z) = p_a + \rho_2 gz$

$$\Rightarrow \rho_2 = \rho_1 \frac{z - \Delta z}{z}$$

Bsp. 5 : Bestimmung des Auftriebs eines eingetauchten Körpers

Lösung 5 :

$$dF_A = p_2 dA - p_1 dA$$

= $(p_a + \rho g z_2)dA - (p_a + \rho g z_1)dA$
= $\rho g (z_2 - z_1)dA$
$$F_A = \rho g \int_A (z_2 - z_1)dA = \rho g V \qquad ; \rho = \rho_{\text{Fluid}}$$

Bsp. 6 :

Ein offenes Gefäß ist mit Flüssigkeit gefüllt. Bestimmen Sie die aufgrund des Flüssigkeitsdrucks auftretende Kraft auf die geneigte Seitenwand und deren Angriffspunkt

Lösung 6:

$$p = p_a + \rho g z = p_a + \rho g x \cos \alpha$$

$$dF = (p - p_a) dA = \rho g x \cos \alpha dA$$

$$F = \rho g \int_A x \cos \alpha \, dA$$
statisches Moment um 'O''
$$\int x \, dA = x_s A$$

$$\Rightarrow \quad F = \rho g x_s \cos \alpha \, A = \rho g z_s A = (p_s - p_a) A$$

$$p = f(z) \quad \Rightarrow \text{ Angriffspunkt } D \text{ von } F$$

$$\neq \text{ Schwerpunkt } \text{S von } \text{A}$$

Momentengleichgewicht um y-Achse $\rightarrow x_D$ (Koordinate von D)

$$x_D \cdot F = \int_A x \, dF$$

$$dF = \rho g x \cos \alpha \, dA = \rho g z \, dA \quad \text{bzw.}$$

$$F = \rho g x_s \cos \alpha \, A = \rho g z_s \, A$$

$$\int x^2 \rho g \cos \alpha \, dA = x_D x_s \rho g \cos \alpha \, A = I_y \rho g \cos \alpha$$

Trägheitsmoment I_y von A bezüglich y

$$I_y = \int x^2 dA = I_s + Ax_s^2$$

 I_s : Flächenträgheitsmoment der Achse durch S || zu y

$$\implies x_D = \frac{I_y}{x_s A} = x_s + \frac{I_s}{x_s A}$$

Kontinuitätsgleichung und Bernoulli Gleichung

Bsp. 1 : Durch eine Rohrleitung mit einem äußeren Durchmesser von 320mm und 10mm Wandstärke strömen 120000kg/h Öl mit ρ = 0.9 kg/dm³

a) Bestimmen Sie die Strömungsgeschwindigkeit.

b) Bestimmen Sie den lichten Durchmesser für $v_2 = 1m/s$

 $\dot{V} = vA$ Lösung 1: $v = \frac{\dot{V}}{A} = \frac{\dot{m}4}{\rho\pi d_i^2} = 0.524\frac{m}{s}$ a) $\dot{V} = konst$ b) $v_1 = v = 0.524 \frac{m}{s}$, $v_2 = 1 \frac{m}{s}$ $\frac{\pi}{4}d_1^2v_1 = \frac{\pi}{4}d_2^2v_2 \quad , d_1 = 0.3m$ $d_2 = d_1 \sqrt{\frac{v_1}{v_2}} = 0.217m$

$$\sum d\vec{F} = -dG\sin\delta + p \, dA - (p + dp)dA$$

mit

$$dG = gdm = \rho g ds dA$$

$$\sin \delta = \frac{dz}{ds}$$

$$\rho \, ds \, dA \frac{dv}{dt} = -\rho \, g \, ds \, dA \frac{dz}{ds} - dp \, dA$$
$$\rho \frac{dv}{dt} = -\rho g \, \frac{dz}{ds} - \frac{dp}{ds}$$
$$v = v(s,t) \qquad \Longrightarrow \qquad dv = \frac{\partial v}{\partial t} dt + \frac{\partial v}{\partial s} ds$$
$$\frac{dv}{dt} = \frac{\partial v}{\partial t} + v \frac{\partial v}{\partial s} = \frac{\partial v}{\partial t} + \frac{\partial (v^2/2)}{\partial s}$$

substantielle Beschleunigung = lokale Beschleunigung + konvektive Beschleunigung

$$\implies \qquad \qquad \rho \frac{\partial v}{\partial t} + \frac{\rho}{2} \frac{\partial v^2}{\partial s} + \frac{dp}{ds} + \rho g \frac{dz}{ds} = 0$$

Annahme: stationäre Strömung, inkompressible Fluide

$$p + \frac{\rho}{2}v^2 + \rho g z = konst$$

Bernoulli Gleichung

p : statischer Druck

 $\frac{\rho}{2}v^{2}$: dynamischer Druck; kinetischer Druck; Geschwindigkeitsdruck; Staudruck $p + \frac{\rho}{2}v^{2} + \rho gz$: Total- oder Gesamtdruck

bei horizontal liegendem Kontrollfaden

$$p + \frac{\rho}{2}v^2 = p_0$$
 : Totaldruck

Division durch ρg

$$z + \frac{p}{\rho g} + \frac{v^2}{2g} = \widetilde{konst}$$

geodätische Höhe + Druckhöhe + Geschwindigkeitshöhe = konstant

Bemerkung: Die Bernoulli Gleichung in obiger Form gilt für stationäre, reibungsfreie, inkompressible Strömungen entlang einer Stromlinie.

Anwendungen der Bernoulli Gleichung

Totaldruck

$$q_1 = \frac{\rho}{2}v_1^2 = p_2 - p_1 = \rho g \Delta z$$

 \Rightarrow

Strömungsgeschwindigkeit

$$v_1 = \sqrt{\frac{2(p_2 - p_1)}{\rho}} = \sqrt{2g\Delta z}$$

Bestimmen Sie eine Beziehung zur Berechnung von v_2 ; gegeben $A_1 >> A_2, h$

Va

$$=\sqrt{2gh}$$

(Torricelli)

Gesucht :

 v_2

Lösung 3:

$$p_{1} + \frac{\rho}{2}v_{1}^{2} = \frac{\rho}{2}v_{2}^{2} + \rho g h_{2} + p_{a}$$

$$p_{1ii} + \frac{\rho}{2}v_{1}^{2} = \frac{\rho}{2}v_{2}^{2} + \rho g h_{2}$$

$$v_{1} \frac{\pi d_{1}^{2}}{4} = v_{2} \frac{\pi d_{2}^{2}}{4}$$

$$v_{1} = v_{2} \left(\frac{d_{2}}{d_{1}}\right)^{2}$$

$$\boxed{2 p_{1ii}} = 2$$

$$v_{2} = \sqrt{\frac{\frac{2 p_{1\ddot{u}}}{\rho} - 2 g h_{2}}{1 - \left(\frac{d_{2}}{d_{1}}\right)^{4}}}$$

 $v_2 = 32 m/s$

bis jetzt wurden gerundete Düsen betrachtet

zum Beispiel : schlitzartige Öffnungen oder kreisförmige Löcher

$$\psi_{N\ddot{a}herg.} = \frac{\pi}{2+\pi} = 0.611$$
 $\psi_{exp} = 0.607$

gerundete Düse : $\psi \approx 1$

Borda-Mündung hat die größte Strahlkonzentration : $\psi = 0.5$

$$p_{2} + \frac{\rho}{2}v_{2}^{2} + \rho g h_{2} = p_{1} + \rho g h_{1} \quad \text{mit } p_{3} = p_{1}$$

$$p_{2} = p_{1} + \rho g (h_{3} - h_{2})$$

$$v_{2} = \sqrt{2 g (h_{1} - h_{3})}$$

Bernoulli von 1 zu 2 OK

auf keinen Fall Bernoulli Glg von 2 nach 3 ,da die Strömung verlustbehaftet ist.

Volumenstrom :
$$\dot{V} = v_2 A_s = \psi A \sqrt{2g(h_1 - h_3)}$$

Messung des Durchflussvolumens und der Geschwindigkeit

→ Drosselgeräte

Messung von $\Delta p_{w} \sim v \text{ bzw.} \Delta p_{w} \sim \dot{V}$

Durchflusszahl α , um idealen Wert an die Realität anzupassen Berechnung und Konstruktion von Drosselgeräten in DIN 1952

theoretischer Volumenstrom \dot{V}_{th}

$$\dot{V}_{th} = v_2 A_2$$

tatsächlicher Volumenstrom \dot{V}_{re}

$$\dot{V}_{re} = \alpha A_2 \sqrt{\frac{2\Delta_{p_w}}{\rho}}$$

Durchflusszahl α

$$\alpha = f(Form, m, A_2, v_2, \rho, \eta)$$

Rohrleitungsanlagen

energieändernde Anlagenteile

erweiterte Bernoulli Gleichung, die Zu- und Abfuhr von Arbeit enthält

Annahme : Strömung von (1) nach (2)

$$p_1 + \rho g h_1 + \frac{\rho}{2} v_1^2 + e_a = p_2 + \rho g h_2 + \frac{\rho}{2} v_2^2 + e_v$$

- e_a : Arbeitsglied ; >0 bei Arbeitszufuhr
- e_v : Verlustglied ; immer >0

Druckverlustterm Δp_{v} Auswirkungen der Reibung \implies $\Delta p_v = \zeta \rho \frac{v^2}{2}$ allgemeine Angabe : $\Delta p_{v} = \Delta p_{vR} + \Delta p_{vE}$ Δp_{vR} : Reibungsverluste des geraden Rohrs $\Delta p_{\nu E}$: Verluste durch Einbauten Turbinenbetr. Stromerzeugung Bsp. 4 : Wasserkraftanlage Pumpbetr. zugeführte Arbeit Überdruckwerte von 2 Stellen an der 1,2200mMessstation ∇ 3,1900m ϕ 4.4 2,1830mPI ϕ 3.5 $\phi 4$

Druck	ϕ	Höhe über Meeresspiegel
$p_1 = 9bar$	$d_1 = 4.4m$	$h_1 = 2200m$
$p_2 = 48bar$	$d_2 = 3.5m$	$h_2 = 1830m$

$$\dot{V} = 60 \frac{m^3}{s}$$

- a) Turbinen- oder Pumpbetrieb ?
- b) Verluste an mechanischer Energie zwischen 1 und 2 ausgedrückt in Δp_v und

$$\Delta h_{v} = \frac{\Delta p_{v}}{\rho g} ?$$

c) Reibungsverluste zwischen 2 und 3 mit ζ = 3.0 treten auf. Der Maschinenwirkungsgrad η_p der Pumpe oder Turbine ist 90%,

wobei
$$\eta_p = \frac{P_h}{P_w}$$

 P_h : Zuwachs an mechan. Leistung zw. Aus – und Eintritt

 P_w : zugeführte Leistung

Bestimmen Sie die Turbinen- oder Pumpleistung!

Lösung 4 :

a) Annahme : Turbinenbetrieb, daher Strömung von $1 \rightarrow 2$ $p_1 + \rho g h_1 + \frac{\rho}{2} v_1^2 = p_2 + \rho g h_2 + \frac{\rho}{2} v_2^2 + \Delta p_{v,1-2}$ $v_1 = \dot{V}/A_1 = 3.95 \, m/s$; $v_2 = \dot{V}/A_2 = 6.24 \, m/s$ $\rho = 1000 \, kg/m^3$ $h_1 = 2200m$, $h_2 = 1830m$ $\Rightarrow \Delta p_{v,1-2} = -2.82 b a r$ $\Delta p_{v,1-2} < 0 \implies \text{Strömung von } 2 \rightarrow 1$ $\Rightarrow Pumpbetrieb$ b) $\Delta p_{v,2-1} = 2.82 \cdot 10^5 \, N/m^2$

$$\Delta h_v = \frac{\Delta p_v}{\rho g} = 28.7m$$

c) P_W ist gesucht

Bernoulli von $3 \rightarrow 1$

$$p_3 + \rho g h_3 + \frac{\rho}{2} v_3^2 + Z = p_1 + \rho g h_1 + \frac{\rho}{2} v_1^2 + \Delta p_{v,2-1} + \Delta p_{v,3-2}$$

Z/ ρ : übertragene mechanische Arbeit / kg

$$P_{h} = \dot{m} \frac{Z}{\rho} = \dot{V}Z$$

$$v_{3} \rightarrow 0$$

$$p_{1} \text{ entspricht dem Überdruck} \rightarrow p_{3} = 0$$

$$\Delta p_{v,3-2} = \zeta \frac{\rho}{2} v^{2} \quad \text{mit} \quad v = \frac{\dot{V}}{A}$$

$$\implies Z = 4.167 \cdot 10^{6} N/m^{2}$$

$$zugeführte mechanische Leistung P_{w} ?$$

$$P_{h} = \dot{m} \left(\frac{Z}{\rho} \right) = \dot{V}Z = 250 \cdot 10^{6} N \, m/s = 250 MW$$
$$\eta_{p} = \frac{P_{h}}{P_{w}}$$
$$\implies P_{w} = \frac{P_{h}}{\eta_{p}} = 278 MW$$

Verluste in der Pumpe

$$P_w - P_h = 28MW$$

Energiegleichung für instationäre Strömungen

v = f(s,t)

$$\implies \rho \int \frac{\partial v}{\partial t} ds + p + \frac{\rho}{2} v^2 + \rho gz = f(t)$$

quasistationär :

$$\rho \int \frac{\partial v}{\partial t} ds \quad << \quad p + \frac{\rho}{2} v^2 + \rho gz$$

Im Allgemeinen wird h (t) oder der Anfahrvorgang v (t) untersucht!

Bsp. 5: Entleerungsvorgang eines Wassertanks ist zu untersuchen

Lösung 5:
$$\rho \int_{1}^{2} \frac{\partial v}{\partial t} ds + p_{2} + \frac{\rho}{2} v_{2}^{2} = p_{1} + \frac{\rho}{2} v_{1}^{2} + \rho gh$$

$$p_{1} = p_{2}$$

$$\rho \int_{1}^{2} \frac{\partial v}{\partial t} ds + \frac{\rho}{2} (v_{2}^{2} - v_{1}^{2}) = \rho gh$$

$$2\rho \int_{1}^{2} \frac{\partial v}{\partial t} ds + \rho (v_{2}^{2} - v_{1}^{2}) = 2\rho gh$$

$$A_{1}v_{1} = A_{2}v_{2}$$

$$h(t = 0) >> l: \quad \frac{\partial v}{\partial t} \approx \frac{dv_{1}}{dt}; \qquad \int_{1}^{2} \frac{\partial v}{\partial t} ds \approx \int_{1}^{2} \frac{dv_{1}}{dt} ds \approx \frac{dv_{1}}{dt} h$$
aus Kontinuitätsgleichung:
$$\frac{dv_{1}}{dt} = \frac{A_{2}}{A_{1}} \frac{dv_{2}}{dt}$$

$$\Rightarrow \qquad 2h \frac{A_{2}}{A_{1}} \frac{dv_{2}}{dt} + v_{2}^{2} \left[1 - \left(\frac{A_{2}}{A_{1}}\right)^{2} \right] = 2gh(t)$$

1 Gleichung für 2 Unbekannte : $v_2(t)$ zusätzliche Gleichung :

$$v_1 = -\frac{dh}{dt} \longrightarrow h(t) = h_0 - \int_0^t v_1 dt$$
 II)

I)

Gleichung I) und II) sind gleichzeitig zu lösen.

ODER Abschätzung von
$$2h(t)\frac{A_2}{A_1}\frac{dv_2}{dt}$$

statiönäres Ausströmen : $v_2 = \sqrt{2gh}$
Differentiation : $\frac{dv_2}{dt} = \frac{g}{\sqrt{2gh}}\frac{dh}{dt} = -\frac{g}{\sqrt{2gh}}v_1 = -\frac{g}{\sqrt{2gh}}v_2\frac{A_2}{A_1}$
 $2h\frac{A_2}{A_1}\frac{dv_2}{dt} = -2gh\left(\frac{A_2}{A_1}\right)^2 = -v_2^2\left(\frac{A_2}{A_1}\right)^2$
 $\frac{dv_2}{dt} = -\frac{v_2^2}{2h}\frac{A_2}{A_1} = -g\frac{A_2}{A_1}$
 $A_1 >> A_2 \implies \frac{dv_2}{dt}$ ist vernachlässigbar
 \implies quasistationäre Strömung

$$\Rightarrow 1) \qquad v_2(t) = \sqrt{2gh}$$
$$\frac{dh}{dt} = -v_1 = -\sqrt{2gh(t)}\frac{A_2}{A_1}$$

Gegeben: h=konst (durch geregelten Zufluss); Ausströmvorgang wird zum Zeitpunkt t=0 in Gang gesetzt.

Gesucht : $v_1(t)$

Lösung 6

$$\begin{array}{l} \ddot{o}sung \ 6: \\ p_0 + \frac{\rho}{2}v_0^2 + \rho gh = p_1 + \frac{\rho}{2}v_1^2 + \rho \int_0^1 \frac{\partial v}{\partial t} ds \\ p_1 = p_0 = p_a \\ v_0 = v_1 \frac{A_1}{A_0}, A_0 >> A_1, v_0 << v_1 \\ \frac{\rho}{2}v_1^2 + \rho \int_0^1 \frac{\partial v}{\partial t} ds = \rho gh \\ \frac{1}{2}\frac{\partial v}{\partial t} ds = \int_0^e \frac{\partial v}{\partial t} ds + \int_e^1 \frac{\partial v}{\partial t} ds \\ \int_0^1 \frac{\partial v}{\partial t} ds = \int_0^e \frac{\partial v}{\partial t} ds + \int_e^1 \frac{\partial v}{\partial t} ds \\ \frac{1}{2}\frac{\partial v}{\partial t} ds = \int_0^e \frac{\partial v}{\partial t} ds + \int_e^1 \frac{\partial v}{\partial t} ds \\ \frac{1}{2}\frac{\partial v}{\partial t} ds = \int_e^e \frac{\partial v}{\partial t} ds = \frac{dv_1}{dt} \frac{A_1}{A(s)} ds = \frac{dv_1}{dt} \frac{1}{t} \end{array}$$

$$\implies \frac{dv_1}{dt}\bar{l} + \frac{v_1^2}{2} = gh \quad \bar{l} \neq l$$

stationäre Ausströmung :

$$v_{1,s} = \sqrt{2gh}$$

$$2\bar{l}\frac{dv_1}{dt} = v_{1,s}^2 - v_1^2$$

$$\frac{dv_1}{v_{1,s}^2 - v_1^2} = \frac{1}{2\bar{l}}dt$$

$$\frac{1}{2v_{1,s}^2} \ln \frac{v_{1,s} + v_1}{v_{1,s} - v_1} = \frac{1}{v_{1,s}} \tanh^{-1}\left(\frac{v_1}{v_{1,s}}\right) = \frac{t}{2\bar{l}}$$

$$v_1 = v_{1,s} \tanh\left(\frac{v_{1,s}t}{2\bar{l}}\right)$$

Wasser in einem U-Rohr wird durch eine Störung aus der Ruhelage gelenkt. Gegeben sind die Größen a,b,r,h,d; gesucht wird der Schwingungsverlauf.

Lösung 7:
$$\rho \int_{1}^{2} \frac{\partial v}{\partial t} ds + p_{2} + \frac{\rho}{2} v_{2}^{2} + \rho g y_{2} = p_{1} + \frac{\rho}{2} v_{1}^{2} + \rho g y_{1}$$
$$p_{1} = p_{2}$$
$$v_{1}^{2} = v_{2}^{2}$$
$$y_{1} = a + r + y$$
$$y_{2} = a + r - y$$

$$\int_{1}^{2} \frac{\partial v}{\partial t} ds = 2gy$$
$$d = \text{konstant} \implies v = v(t)$$
$$2gy = \frac{dv}{dt}l$$

mit
$$l = 2a + b + \pi r$$
 und $v = -\frac{dy}{dt}$ ergibt sich
 $\frac{d^2y}{dt^2} + \frac{2g}{l}y = \frac{d^2y}{dt^2} + \omega^2 y = 0$

Schwingungsgleichung der harmonischen Bewegung

allg. Lösung :

$$y = A\cos(\omega t) + B\sin(\omega t)$$

bzw.
$$y = \alpha \cos(\omega t - \Theta)$$

mit
$$\alpha = \sqrt{(A^2 + B^2)}, \tan(\Theta) = \frac{B}{A}$$

Anfangs- und Randbedingungen :

$$t = 0: y = h \quad \text{und} \quad v = v_0$$
$$y = h \cos(\omega t) - \frac{v_0}{\omega} \sin(\omega t)$$
$$y = \sqrt{h^2 + \frac{v_0^2}{\omega^2}} \cos(\omega t - \Theta)$$
$$\Theta = \tan^{-1} \left(\frac{-v_0}{\omega h}\right)$$

- Gegeben: $z_1 = 4.3m$, l = 85m, $\zeta = 8.1$, d = 80mm
- Gesucht : Schieber F wird plötzlich geöffnet ; $v_2(t)$ bis zum stationären Zustand?

Lösung 8 :

$$p_{1} + \frac{\rho}{2}v_{1}^{2} + \rho gz_{1} = p_{2} + \frac{\rho}{2}v_{2}^{2} + \rho gz_{2} + \Delta p_{v} + \rho \int_{1}^{2} \frac{\partial v}{\partial t} ds$$

$$p_{1} = p_{2}, \quad v_{1} \approx 0, \quad z_{2} = 0$$

$$l \gg z_{1} \quad : \quad \int_{1}^{2} \frac{\partial v}{\partial t} ds = \frac{dv_{2}}{dt} l$$

$$\Delta p_{v} = \zeta \frac{\rho}{2}v_{2}^{2}$$

$$l \frac{dv_{2}}{dt} + \frac{v_{2}^{2}}{2}(1+\zeta) = gz_{1}$$

$$\frac{dv_{2}}{dt} = \frac{1}{l} \left[gz_{1} - \frac{v_{2}^{2}}{2}(1+\zeta) \right] = \frac{1+\zeta}{2l} \left[\frac{2gz_{1}}{1+\zeta} - v_{2}^{2} \right]$$

mit
$$a_1^2 = \frac{2 g z_1}{1 + \zeta}$$
 ergibt sich
 $\frac{1}{2a_1} \ln \left(\frac{a_1 + v_2}{a_1 - v_2}\right) = \frac{1 + \zeta}{2l} t$
 $t = \frac{1}{a_2} \ln \left(\frac{a_1 + v_2}{a_1 - v_2}\right)$

wobei
$$a_2 = a_1 \frac{(1+\zeta)}{l}$$
; mit $e^{a_2 t} = \frac{a_1 + v_2}{a_1 - v_2}$ erhält man

$$V_{2} = a_{1} \frac{1 - e^{-a_{2}t}}{1 + e^{-a_{2}t}} = \sqrt{\frac{2gz_{1}}{1 + \zeta} \frac{(1 - e^{-a_{2}t})^{2}}{(1 + e^{-a_{2}t})^{2}}}$$

$$t \to \infty$$
 : $e^{-\infty} \to 0$

$$v_{2,\infty} = a_1 = \sqrt{\frac{2gz_1}{1+\zeta}} = 3.045 \, m/s$$
$$v_2 = v_{2,\infty} \frac{1-e^{-a_2 t}}{1+e^{-a_2 t}}$$

Impulssatz und Impulsmomentensatz

Anwendung: Bestimmung der Kräfte der Strömung auf die Umgebung

Impulssatz

zum Zeitpunkt *t* sei KS = KV $\longrightarrow \sum \vec{F}_{sys} = \sum \vec{F}_{KV}$

anhand des Transporttheorems mit $B_{sys} = \vec{I}$ und $b = \vec{v}$

$$\frac{d}{dt} \int_{SYS} \vec{v} \rho dV = \frac{\partial}{\partial t} \int_{KV} \vec{v} \rho dV + \int_{KF} \rho \vec{v} (\vec{v} \cdot \vec{n}) dA$$

KS
KV

$$\implies \qquad \frac{\partial}{\partial t} \int_{KV} \rho \vec{v} dV + \int_{KF} \rho \vec{v} (\vec{v} \cdot \vec{n}) dA = \sum \vec{F}_{KV}$$

Impulssatz

stationäre Strömung

$$\frac{dI}{dt} = \int_{KF} \rho \vec{v} (\vec{v} \cdot \vec{n}) dA = \sum \vec{F}_{KV}$$

- äußere Kräfte : Volumenkräfte, Oberflächenkräfte
- Volumenkräfte Gravitationskraft

$$\vec{F}_g = \int_{KV} \rho \vec{g} dV$$

$$\vec{F}_p = -\int_{KF} p\vec{n}dA$$
$$p = p_a = konst \implies \vec{F}_p \to 0$$

weiterhin \rightarrow Stützkraft \vec{F}_s

- \vec{F}_s : Kraft von einem festen Körper auf das strömende Fluid.
 - → Impulssatz für stationäre Strömungen mit den jeweiligen Kraftanteilen

$$\frac{d\vec{I}}{dt} = \int_{KF} \rho \vec{v} (\vec{v} \cdot \vec{n}) dA = \vec{F}_g + \vec{F}_s + \vec{F}_p + \vec{F}_r$$

Bemerkung : Kontrollfläche muss einfach zusammenhängend sein

Beispiele zum Impulssatz

Lösung 1 :

Bernoulli:
$$p_a + \frac{\rho}{2}v_1^2 = p_a + \frac{\rho}{2}v_2^2 = p_a + \frac{\rho}{2}v_3^2$$

 $\implies v_1 = v_2 = v_3$

Kontinuitätsgleichung : $v_1b_1 = v_2b_2 + v_3b_3$ $\implies b_1 = b_2 + b_3$

Komponenten der Stützkraft aus Impulssatz

x-Richtung :
$$-\rho v_1 \underline{\cos \beta v_1} b_1 + 0 = F_{\underline{sx}}$$

y-Richtung :
$$-\rho (v_1) \sin \beta (v_1) (b_1) + \rho v_2^2 b_2 - \rho v_3^2 b_3 = F_{\underline{sy}}$$

$$\Rightarrow -b_1 \sin \beta + b_2 - b_3 = 0$$
$$-b_1 \sin \beta + b_2 - b_1 + b_2 = 0$$

$$\Rightarrow \qquad \underline{b_2} = \frac{b_1}{2} (1 + \sin \beta)$$
$$\underline{b_3} = \frac{b_1}{2} (1 - \sin \beta)$$

Aus einem Behälter austretendes Fluid wird durch eine Prallplatte um 90° umgelenkt. Gegeben sind : Fluid: Wasser, $p_{1ii} = 2bar, d_2 = 5mm$

Umlenkung
$$\rightarrow p(r)$$
 - Verteilung

- ohne Impulssatz : F_p aus Integral von p(r), d. h. Kenntnis der Strömung innerhalb der Kontrollfläche nötig.
- mit Impulssatz : Kenntnisse der Strömungsverhältnisse innerhalb der Kontrollfläche nicht erforderlich

$$p_{1\ddot{u}} + p_a = p_a + \rho v_2^2 / 2$$

$$p_1$$

$$v_2 = \sqrt{2 p_{1\ddot{u}} / \rho} = 20 m/s$$

$$\dot{m} = \rho v_2 \frac{\pi d_2^2}{4} = 0.393 kg / s$$

 $F_p = \dot{m} v_2 = 7.85 N$

 F_p entspricht der Rückstoßkraft auf den Behälter Änderung von F_p , wenn *l* verkleinert wird, $l \rightarrow 0$?

$$F_p = \dot{m}v_2 = A_2\rho v_2^2 = 2A_2 p_{1\ddot{u}}$$

$$\Rightarrow \qquad F_p = 2F_{l=0}$$

$$F_{l=0} = \frac{F_p}{2}, \text{ da } \dot{m} \rightarrow 0 \text{ für } l \rightarrow 0$$

_

$$p_{2} - p_{3} = \rho v_{3}^{2} - \rho v_{2}^{2} \frac{A_{2}}{A_{3}} = \frac{\rho}{2} v_{2}^{2} \left[2 \left(\frac{A_{2}}{A_{3}} \right)^{2} - 2 \left(\frac{A_{2}}{A_{3}} \right) \right]$$
$$\Delta p_{v} = \frac{\rho}{2} v_{2}^{2} \left[1 - 2 \left(\frac{A_{2}}{A_{3}} \right) + \left(\frac{A_{2}}{A_{3}} \right)^{2} \right]$$
$$\Delta p_{v} = \frac{\rho}{2} v_{2}^{2} \left[1 - \frac{A_{2}}{A_{3}} \right]^{2}$$

mit
$$v_2 = v_1 \frac{A_1}{A_2} = v_1 \frac{1}{\psi m}$$
 bzw

$$\frac{A_2}{A_3} = \frac{A_2}{A_1} = \psi m = \frac{A_2}{A} \frac{A'}{A_1}$$

$$\frac{\Delta p_{v}}{\frac{\rho}{2}v_{1}^{2}} = \zeta_{B} = \left[\frac{1 - \psi m}{\psi m}\right]^{2}$$

Geben Sie unter Vernachlässigung der Reibungskraft eine Beziehung für die Widerstandskraft des Einbaus an.

Geben Sie für die Wasserspritzanlage die Kraft F_{st} an, die der Strahl auf die Platte ausübt; es ist $p_{1ii} = 4bar$, $d_1 = 60mm$, $d_2 = 20mm$ die Strömung sei reibungsfrei.

Bernoulli 2-3 : $p_a + \frac{\rho}{2}v_2^2 = p_a + \frac{\rho}{2}v_3^2$ $\implies v_2 = v_3$

Impulssatz in x-Richtung : $\dot{m}(v_2 \sin \alpha - v_2) = -F_{st'}$ Es sei $\alpha = 0 \implies F_{st'} = \dot{m}v_2$

 $F_{st'}$: Kraft von der Platte auf den Wasserstrahl

 F_{st} : Kraft des Strahls auf die Platte

$$F_{st}$$
 entspricht - F_{st} '

Bernoulli 1-2 :

$$p_{1ii} + \frac{p}{2}v_1^2 = \frac{p}{2}v_2^2$$
$$v_1 = \sqrt{\frac{2p_{1ii}}{\sqrt{\rho \left[\left(\frac{d_1}{d_2}\right)^4 - 1 \right]}}}$$

mit $p_{1\ddot{u}} = p_1 - p_a$ mit $v_2 = v_1 \left(\frac{d_1}{d_2}\right)^2$

$$F_{st} = \dot{m}v_2 = 254.5N$$

Gegeben : reibungsfreie Strömung durch 90° Krümmer und $p_1 = 221 kpa$, $\vec{v}_2 = -16 \vec{j} m/s$ $A_1 = 0.01 m^2$, $A_2 = 0.0025 m^2$, $p_a = 101 kpa$, Wasser

Impulssatz in x-Richtung :

$$-\rho v_1^2 A_1 = p_1 A_1 + p_a A_3 - p_a (A_1 + A_3) + F_x$$
$$F_x = -\rho v_1^2 A_1 - (p_1 - p_a) A_1$$

Kontinuitätsgleichung:

$$v_1 = v_2 \frac{A_2}{A_1} = 4 m/s$$

$$\implies \qquad F_x = -1.36 kN$$

 F_{χ} weist anders als angenommen in die negative x-Richtung.

Impulssatz in y-Richtung :

$$-\rho v_2^2 A_2 = p_a A_4 + p_a A_2 - p_a A_2 - p_a A_4 + F_y$$
$$F_y = -\rho v_2^2 A_2 = -639N$$

 \implies F_y weist in die negative y-Richtung.

Vereinfachte Propellertheorie

Annahmen : • Anzahl der Flügel ohne Einfluss auf den Schub

- Strahldrehung ohne Einfluss auf ax. Geschwindigkeit
- keine Verluste bei Beschleunigung und Verzögerung

Analyse für ein mitbewegtes Kontrollvolumen; Umgebungsdruck ist konstant

Darstellung der Annahmen :

Impulssatz in x-Richtung :

$$F_{s} = \dot{m}(v_{2} - v_{1}) = \rho v_{m} A_{p}(v_{2} - v_{1}) = A_{p} \Delta p_{p}$$

 v_m aus

$$F_s = A_p \Delta p_p = \rho v_m A_p (v_2 - v_1)$$
$$F_s = A_p (p_r - p_e)$$

und Bernoulli :

$$p_{a} + \frac{\rho}{2}v_{1}^{2} = p_{l} + \frac{\rho}{2}v_{m}^{2}$$

$$p_{a} + \frac{\rho}{2}v_{2}^{2} = p_{r} + \frac{\rho}{2}v_{m}^{2}$$

$$\Delta p_{A} = \Delta p_{p} = p_{r} - p_{l} = \frac{\rho}{2}(v_{2}^{2} - v_{1}^{2})$$
mit

$$\frac{1}{2}(v_{2}^{2} - v_{1}^{2}) = \frac{1}{2}(v_{2} + v_{1})(v_{2} - v_{1}) = v_{m}(v_{2} - v_{1})$$
folgt

$$v_{m} = \frac{v_{1} + v_{2}}{2}$$

Bemerkung : Analoges Ergebnis für Windenergieanlage

Vortriebsgrad η_p enthält mechanische Mindestverluste

$$\begin{split} \eta_p &= \frac{Nutzen}{Aufwand} = \frac{F_s v_1}{\frac{1}{2} \dot{m} \left(v_2^2 - v_1^2\right)} = \frac{\dot{m} \left(v_2 - v_1\right) v_1}{\frac{1}{2} \dot{m} \left(v_2^2 - v_1^2\right)} = \frac{F_s v_1}{F_s v_m} \\ \eta_p &= \frac{2v_1}{v_2 + v_1} = \frac{2}{1 + \frac{v_2}{v_1}} = \frac{F_s v_1}{F_s v_m} \\ \implies F_s \text{ gegeben} \rightarrow \eta_p \uparrow, \text{ wenn } v_2 - v_1 \text{ klein bzw. } A_p \text{ groß} \end{split}$$

Impulsmomentensatz

Drehmoment ist für viele Probleme wesentlich

Impulsmomentensatz liefert den Zusammenhang zwischen Drehmoment und Drehimpuls

Herleitung mittels Bildung des Momentes des Impulssatzes.

- \vec{v} : Teilchengeschwindigkeit
- ρ : Dichte
- ΔV : infinit. Partikelvolumen
- $\Delta \vec{F}_p$: resultierende äußere Kraft
- 2. Newtonsches Gesetz

$$\frac{d}{dt}(\vec{v}\rho\Delta V) = \Delta \vec{F}_p$$

Moment bzgl. Ursprung

$$\vec{r} \times \frac{d}{dt} (\vec{v} \rho \Delta V) = \vec{r} \times \Delta \vec{F}_p$$

es ist :

$$\frac{d}{dt} [(\vec{r} \times \vec{v})\rho\Delta V] = \frac{d\vec{r}}{dt} \times \vec{v}\rho\Delta V + \vec{r} \times \frac{d}{dt} (\vec{v}\rho\Delta V) = \vec{v} \times \vec{v}\rho\Delta V + \vec{r} \times \frac{d}{dt} (\vec{v}\rho\Delta V) = \vec{r} \times \frac{d}{dt} (\vec{v}\rho\Delta V)$$

$$\implies \frac{d}{dt} [(\vec{r} \times \vec{v}) \rho \Delta V] = \vec{r} \times \Delta \vec{F}_p$$

Summation und Vertauschung liefert :

$$\frac{d}{dt} \int_{sys} (\vec{r} \times \vec{v}) \rho dV = \sum (\vec{r} \times \vec{F})_{sys}$$

zeitliche Änderung des Drehimpulses entspricht der Summe der äußeren Drehmomente

zur Zeit *t* gilt: $KV \stackrel{\circ}{=} KS$

$$\implies \sum (\vec{r} \times \vec{F})_{sys} = \sum (\vec{r} \times \vec{F})_{KV}$$

Reynolds Transporttheorem

$$\implies \frac{d}{dt} \int_{Sys} (\vec{r} \times \vec{v}) \rho dV = \frac{\partial}{\partial t} \int_{KV} (\vec{r} \times \vec{v}) \rho dV + \int_{KF} (\vec{r} \times \vec{v}) \rho \vec{v} \cdot \vec{n} dA$$
$$\implies \frac{\partial}{\partial t} \int_{KV} (\vec{r} \times \vec{v}) \rho dV + \int_{KF} (\vec{r} \times \vec{v}) \rho \vec{v} \cdot \vec{n} dA = \sum (\vec{r} \times \vec{F})_{KV} = \sum \vec{M}$$

Impulsmomentensatz

... ist wesentlich bei der Analyse von Verdichtern, Turbinen etc.

im Folgenden schematische Darstellung eines Ventilators und einer Windmühle.

Ventilator :

Winkelgeschwindigkeit	$\omega = konst.$	
Schaufelgeschwindigkeit	$\vartheta = \omega r$	
absolute Geschwindigkeit	\vec{v}	(ruh. Beobachter)
relative Geschwindigkeit	\vec{v}_R	(mitbew. Beobachter)

absolute Fluidgeschwindigkeit : $\vec{v} = \vec{v}_R + \vec{\vartheta}$

Annahmen : • Fluidein- und –austritt bei r = konstant

$$\omega r = \vartheta_1 = \vartheta_2$$

• Strömung parallel zur rotierenden Schaufel

Ausströmen in axialer Richtung \vec{v}_1 ; \vec{v}_2 besitzt Tangentialkomponente $\vec{v}_{2,t}$; $\vec{v}_{2,t}$ und ϑ gleiche Richtung \rightarrow Pumpe; d. h. Arbeit von Schaufel an Fluid.

 $\vec{\vartheta}$: Schaufel- bzw. Fluidgeschw.

- \vec{v}_R : Relativgeschwindigkeit (zum Rotor)
- \vec{v} : absolute Geschwindigkeit (Fluidgeschwindigkeit rel. zum Gehäuse)

lediglich die tangentiale Geschwindigkeit v_t beeinflusst das Moment der Rotorachse

Annahme : stationäre Strömung

$$\longrightarrow \qquad M = \int_{KF} v_t r(\rho \vec{v}_R \cdot \vec{n} dA) = \int_{KF} v_t r d\dot{m}$$

Eulersche Turbinengleichung: $M = \dot{m}(v_{t_2}r_2 - v_{t_1}r_1)$

 $v_t > 0$ sofern v_t und ωr gleiche Richtung

Leistung des Rotors :

$$P = M\omega = \dot{m}(v_{t_2}\omega r_2 - v_{t_1}\omega r_1)$$

Leistung vom Rotor an das Fluid, wenn $V_t > 0$ und P > 0.

Bsp. 7: Vereinfachungen des Impulsmomentensatzes

- 1D Strömung
- stationäre bzw. im Mittel stationäre zyklische Strömung

$$\longrightarrow \quad \frac{\partial}{\partial t} \int_{KV} (\vec{r} \times \vec{v}) \rho dV = 0$$

 Komp. in Rotorachsenrichtung wesentlich

Wasservolumenstrom von 1000 ml/s speist einen Rasensprenger; Strömung tritt tangential durch 2 Düsen der Fläche von 30 mm² aus; der Radius des Sprengers ist 200 mm .

- a) Drehmoment, um den Sprengerkopf festzuhalten?
- b) Drehmoment bei 500 U/min ?
- c) Winkelgeschwindigkeit für M=0 ?

Skizze :

Lösung 7: Drehmoment der Welle ist eine Schnittgröße; Strömung ist zyklisch, jedoch im zeitlichen Mittel stationär.

a)

Eintritt :

 $\vec{v} \perp \vec{r}, \vec{r} \rightarrow 0 \implies \vec{v} x \vec{r} = \vec{0}$

Austritt : $\vec{r} x \vec{v}$ (ax. Komponente) $\rightarrow r_2 v_{t2}$

 v_{t2} Tangentiakomponentevon \vec{v}

$$\implies \left[\int_{KF} (\vec{r} \times \vec{v}) \rho \vec{v} \cdot \vec{n} dA \right]_{ax} = -r_2 v_{t_2} \dot{m}$$

Minus, da v_t und $r\omega$ entgegengesetzt.

$$M_{a} = -r_{2}v_{t2}\dot{m}$$

$$\vec{\vartheta} = \vec{0} \implies \vec{v} = \vec{v}_{R}$$

$$v_{t2} = v_{R,2} = \frac{\dot{m}}{2\rho A_{2}} = \frac{\dot{V}}{2A_{2}} = 16.7 \, m/s$$

$$\longrightarrow M_{a} = -3.34 \, Nm$$

n=500 U/min

$$\begin{aligned} \vartheta_{\theta 2} &= u_2 = \omega r_2 = 2\pi n r_2 \\ \text{bzw.} & v_{t_2} &= v_{R,2} - u_2 = v_{R,2} - r_2 2\pi n \\ v_{t_2} &= 16.7 \, \text{m/s} - 10.5 \, \text{m/s} = 6.2 \, \text{m/s} \end{aligned}$$

$$M_{c} = -r_{2}(v_{R,2} - r_{2}\omega)\dot{m} = 0$$

$$\implies \qquad \underline{\omega} = \frac{v_{R,2}}{r_2} = 83.5 \ rad / s$$

bzw. $n = \frac{\omega}{2\pi} = \frac{83.5 \ rad \ / \ s}{2\pi \ rad \ / U} = 797 \ U \ / \min$

auch für $M_c = 0$ ist *n* endlich!

$$M_b = -1.24Nm$$

$$\left|M_{b}\right| < \left|M_{a}\right|$$

b)

Strömung in offenen Gerinnen

wesentlicher Unterschied zur Rohrströmung \rightarrow freie Oberfläche mit Atmosphärendruck

Annahme : Gerinneberandung ist fest

ruhender Beobachter

 Δz : Höhe der Elementarwelle

 Δv : Geschwindigkeit der Wand (plötzlich in Bewegung gesetzt)

t = 0: ruhendes Fluid

mitbewegter Beobachter

Geschwindigkeit des Bezugssystems : c

Kontinuitätsgleichung :

ung:
$$-czb = (-c + \Delta v)(z + \Delta z)b$$

 $\Rightarrow c = \frac{(z + \Delta z)\Delta v}{\Delta z} \Rightarrow c = z\frac{\Delta v}{\Delta z} , \operatorname{mit} \frac{\Delta z}{z} <<1$

Impulssatz in x-Richtung :

$$p_a bz'_{\Delta} + \int_0^{z+\Delta z} (p_a + \rho gz) bdz - p_a bz' - \int_0^z (p_a + \rho gz) bdz = \rho c bz (-c + \Delta v + c)$$
$$\frac{1}{2} \rho g bz^2 - \frac{1}{2} \rho g b(z + \Delta z)^2 = -\rho c bz \Delta v$$
mit $\Delta z \ll z$ bzw. $\Delta z^2 \ll z \Delta z$ folgt

$$\frac{\Delta v}{\Delta z} = \frac{g}{c} = \frac{c}{z} \qquad \Longrightarrow \qquad c^2 = gz$$

Geschwindigkeit einer Welle kleiner Amplitude : $c = \sqrt{gz}$

derartige Wellenbewegungen durch das Verhältnis von Gewichtskräften (~ ρ g) und Trägheitskräften (~ ρ) bestimmt.

Strömungsformen der Gerinneströmung

bis jetzt: Ausbreitung einer Welle mit c in einem ruhenden Fluid mit v=0

Wellengeschwindigkeit c (nach rechts)	Fluidgeschwindigkeit v (nach links)	Geschwindigkeit relativ zum ruhenden Beobachter
С	v < c	c - v (nach rechts)
С	v = c	0
С	v > c	v-c (nach links)

Darstellung mittels $Fr = \frac{v}{c} = \frac{v}{\sqrt{gz}}$

v < c: Strömung stromauf wahrnehmbar; $Fr < 1 \rightarrow$ unterkritische Strömung

v > c: Strömung nur stromab feststellbar; $Fr > 1 \rightarrow$ überkritische Strömung

 $v = c : Fr = 1 \rightarrow$ kritische Strömung

die Froudezahl *Fr* bestimmt den Charakter der Strömung

Fr < 1: Veränderungen sind stetig und glatt

Fr > 1: Veränderungen können nahezu diskontinuierlich sein

Energiehöhendiagramm

Herleitung der Zshgs. Energiehöhe = f(z)

$$z_1 - z_2 = \frac{v_2^2 - v_1^2}{2g} + (s_v - s_0)l$$

verlustfreies, horizontales Gerinne

$$z_{1} - z_{2} = \frac{v_{2}^{2} - v_{1}^{2}}{2g} \qquad H_{1} = H_{2}$$
$$H = z + \frac{v^{2}}{2g} = konst$$

geneigte, verlustfreie Sohle

 $H_1 + y_1 = H_2 + y_2 = konst$

Gerinne mit rechteckigem Querschnitt

Energiehöhendiagramm

zur Darstellung:

H, *q* bekannt \rightarrow kub. Gleichung in *z*

→ 3 Lösungen: z_{sub} , z_{sup} , z_{neg} für H > Hmin = f(q)

 z_{neg} unphysikal. \implies 2 Tiefen für eine Parameterkombination *H*, *q*

Grenzfälle für H sehr groß :

- langsamer großer Kanal $H \to z$ für $z \to \infty$ bzw. $Z_{sub} \to H$
- Flachwasserkanal mit v sehr groß

$$H \rightarrow \frac{v^2}{2g}$$
 für $z \rightarrow 0$ bzw. $z_{sup'} \rightarrow 0$

für $H > H_{min}$ ergeben sich 2 Lösungen pro q = konstant

rechteckiger Kanal; $q=0.5342 m^2/s$ strömt über Rampe mit $y_2 = 0.1524 m$, für $z_1 = 0.701 m$ bestimmen Sie $z_2 + y_2$ unter Vernachlässigung der Reibung.

Lösung 1: verlustfreie Strömung $h_v = 0$ $z_1 + \frac{v_1^2}{2g} + y_1 = z_2 + \frac{v_2^2}{2g} + y_2$ $v_1 = \frac{q}{z_1} = 0.762 \, m/s$ $\implies 0.5791 = z_2 + \frac{v_2^2}{19.6291}$

Kontiuitätsgleichung

$$v_2 z_2 = v_1 z_1 = 0.5342 \ m^2/s$$

kubische Gleichung für z_2 : $z_2^3 - 0.5791z_2^2 + 0.0145 = 0$ $z_{2,1} = 0.5243m$ $z_{2,2} = 0.1945m$ $z_{2,3} = -0.1420m$ \leftarrow nicht physikalisch \implies 2 Lösungen : $z_2 + y_2 = 0.5243m + 0.1524m = 0.6767m$ $z_2 + y_2 = 0.1945m + 0.1524m = 0.3469m$ welche Lösung ergibt sich?

(1) stromauf die Rampe

stromab entweder unterkritisch (2) oder überkritisch (2 ')

$$H = z + \frac{q^2}{2gz^2} = z + \frac{0.0145}{z^2}$$

aus H + y = konst. folgt :

$$H_1 = H_2 + (y_2 - y_1) = H_2 + 0.1524$$

für die überkritische Lösung muss

$$H_{\min} = \frac{3}{2} z_{gr} = \frac{3}{2} \left(\frac{q^2}{g}\right)^{1/3} = 0.4613m$$

zutreffen; notwendige Sohlenhöhe

$$\rightarrow \qquad H_{\min} + y_{gr} = H_1 + y_1 \\ H_1 - H_{\min} = y_{gr} - y_1 = 0.7315m - 0.4613m = 0.2702m$$

sofern y_{gr} vorhanden \rightarrow stromab Fr > 1da $y \le y_2 < y_{gr}$ folgt : unterkritische Strömung Fr < 1

$$\rightarrow \quad \underline{z_2 + y_2} = 0.6767m \quad < z_1 + y_1 = 0.701$$

Wassersprung

aus Beobachtungen : nahezu diskontinuierliche Änderung der Wassertiefe von flachem zu tiefem Wasser möglich; zum Beispiel stromab von Schleusentoren.

Annahme: horizontal rechteckiger Kanal stat., reibungsfrei, 1D Strömung

Kontinuitätsgleichung : $\dot{m} = \rho v_1 b z_1 = \rho v_2 b z_2$

$$\implies (v_2 - v_1) \frac{v_1 z_1}{g} = \frac{z_1^2}{2} - \frac{z_2^2}{2}$$

verlustbehaftete Energiegleichung

$$z_1 + \frac{v_1^2}{2g} = z_2 + \frac{v_2^2}{2g} + h_v$$

ohne Wassersprung : $z_1 = z_2, v_1 = v_2, h_v = 0$

Nichtlinearität \implies mehrere Lösungen

$$\frac{z_1^2}{2} - \frac{z_2^2}{2} = \frac{v_1 z_1}{g} \left(\frac{v_1 z_1}{z_2} - v_1 \right) = \frac{v_1^2 z_1}{g z_2} (z_1 - z_2) = \frac{1}{2} (z_1 + z_2) (z_1 - z_2)$$
$$\implies \qquad \left(\frac{z_2}{z_1} \right)^2 + \left(\frac{z_2}{z_1} \right) - 2Fr_1^2 = 0$$

bzw. $\frac{z_2}{z_1} = \frac{1}{2}(-1 \pm \sqrt{1 + 8Fr_1^2})$

+ Vorzeichen ist relevant

der Wassersprung kann von Vorteil sein :

überkritische Strömung im Überlaufkanal eines Staudamms → Beschädigung des Abströmkanals möglich. Maßnahme : Wassersprung → erhebliche Dissipation → unterkritische Strömung

- Bemerkung : Struktur des Wassersprungs sehr komplex
 - Wassersprung ebenfalls in anderen
 Querschnittsformen vorhanden

Laminare reibungsbehaftete Strömung

Reibungseinflüsse von Bedeutung bei vielen Strömungsphänomenen

Viskosität

hypothetisches Experiment

 $u(y) = u_{\infty} \frac{y}{b}$

dy

 $\frac{du}{du} = \frac{u_{\infty}}{du} = konst.$

b

Festkörper wird durch Fluid ersetzt

weitere Untersuchungen $\implies \tau \sim \dot{\gamma}$

$$\tau \sim \frac{du}{dy} \qquad \Longrightarrow \quad \tau = \eta \frac{du}{dy}$$

Proportionalitätskonstante η : dynamische Viskosität

Einteilung der Fluide anhand $\tau = f(\frac{du}{dy})$ - Darstellung

$$\tau = \eta \frac{du}{dy}$$
 Newton. Elementargesetz der Reibung

→ Newtonsche oder normalviskose Fluide

neben $\eta \rightarrow$ kinematische Viskosität $\nu \qquad \nu = \frac{\eta}{\rho} \quad \left[\frac{m^2}{s}\right]$

Nicht-Newtonsche oder anormalviskose Fluide weichen vom Newtonschen Elementargesetz ab.

Bingham (Plastik) : weder Fluid noch Festkörper

- $au < au_0$: keine Bewegung ightarrow kein Fluid
- $\tau > \tau_0$: Strömung \rightarrow kein Festkörper

→ Zahnpasta, Mayonnaise

Stationäre Strömung zwischen parallelen Platten

Druckgradient in x-Richtung \rightarrow Strömung u, v = 0

stationäre Strömung $\frac{\partial u}{\partial t} \rightarrow 0$; $\sum F$ in x - Richtung $\left(p - \frac{\partial p}{\partial x}\frac{dx}{2}\right)dy - \left(p + \frac{\partial p}{\partial x}\frac{dx}{2}\right)dy + \left(\tau - \frac{\partial \tau}{\partial y}\frac{dy}{2}\right)dx - \left(\tau + \frac{\partial \tau}{\partial y}\frac{dy}{2}\right)dx = 0$ $-\frac{\partial p}{\partial r} - \frac{\partial \tau}{\partial v} = 0$ mit $\tau = -\eta \frac{\partial u}{\partial v}$

$$-\frac{\partial p}{\partial x} + \eta \frac{\partial^2 u}{\partial y^2} = 0 \tag{1}$$

 $\sum F$ in y - Richtung

$$\left(p - \frac{\partial p}{\partial y}\frac{dy}{2}\right)dx - \left(p + \frac{\partial p}{\partial y}\frac{dy}{2}\right)dx - \rho g dx dy = 0$$
$$-\frac{\partial p}{\partial y} - \rho g = 0$$

bzw. $p = -\rho gy + f_1(x)$

Bestimmung von u(y):

Integration von Gleichung (1)

$$\frac{du}{dy} = \frac{1}{\eta} \frac{\partial p}{\partial x} y + c_1 \qquad \qquad u(y) = \frac{1}{\eta} \frac{\partial p}{\partial x} \frac{y^2}{2} + c_1 y + c_2$$

Randbedingungen : $y = \pm h$ u = 0

$$0 = \frac{1}{\eta} \frac{\partial p}{\partial x} \frac{h^2}{2} \pm c_1 h + c_2$$

$$c_1 = 0 \qquad c_2 = -\frac{1}{\eta} \frac{\partial p}{\partial x} \frac{h^2}{2} \qquad \Longrightarrow \qquad u(y) = \frac{1}{2\eta} \left(\frac{\partial p}{\partial x}\right) (y^2 - h^2)$$

$$\frac{\dot{V}}{b} = q = \int_{-h}^{h} u(y) dy = \int_{-h}^{h} \frac{1}{2\eta} \left(\frac{\partial p}{\partial x}\right) (y^2 - h^2) dy$$

$$q = \frac{2h^3 \Delta p}{3\eta l} > 0$$
es sei
$$\frac{\Delta p}{l} = -\frac{\partial p}{\partial x} \implies q = -\frac{2h^3}{3\eta} (\frac{\partial p}{\partial x})$$
mittlere Geschwindigkeit \bar{u} :
$$\bar{u} = \frac{1}{2hb} \int_{-h}^{h} u(y) b dy = \frac{q}{2h} = \frac{h^2 \Delta p}{3\eta l}$$

maximale Geschwindigkeit $u_{max} = u(y = 0)$:

es sei

$$u_{\max} = -\frac{h^2}{2\eta} \left(\frac{\partial p}{\partial x}\right) \qquad u_{\max} = \frac{3}{2}\overline{u}$$

D. h.
$$\frac{\partial p}{\partial x}$$
, η , h bekannt $\implies u(y)$, \overline{u} , u_{\max} , q

Couette Strömung

 $y = 0: \qquad u = 0$

y = h: $u = u_{\infty}$

→ Couette-Strömung

$$\frac{\partial p}{\partial x} = 0 \quad \longrightarrow \quad \frac{u}{u_{\infty}} = \frac{y}{h}$$

Bemerkung : Simulation durch 2 konzentrisch angeordnete Zylinder mit $h \ll R_i$

Stationäre Strömung in Rohren mit Kreisquerschnitt

$$-\frac{\partial p}{\partial x} - \frac{\tau}{r} - \frac{\partial \tau}{\partial r} + \rho g \sin \alpha = 0$$

bzw.
$$-\frac{\partial p}{\partial x} - \frac{1}{r} \frac{\partial (r\tau)}{\partial r} + \rho g \sin \alpha = 0$$

Integration in radialer Richtung :

$$\tau = \left(-\left(\frac{\partial p}{\partial x}\right) + \rho g \sin \alpha\right) \frac{r}{2} + \frac{c_1}{r}$$

mit $\tau = -\eta \frac{\partial u}{\partial x}$

$$dr$$
$$u = \frac{r^2}{4\eta} \left[\left(\frac{\partial p}{\partial x} \right) - \rho g \sin \alpha \right] - \frac{c_1}{\eta} \ln r + c_2$$

Randbedingungen : r=0 *u*: *endlich*

$$r=R$$
 $u=0$

$$r=0 \implies c_1 = 0, \quad da \quad \ln(0) = -\infty$$

$$r=R \implies c_2 = -\frac{R^2}{4\eta} \left[\left(\frac{\partial p}{\partial x} \right) - \rho g \sin \alpha \right]$$

$$\implies u(r) = \frac{1}{4\eta} \left[\left(\frac{\partial p}{\partial x} \right) - \rho g \sin \alpha \right] (r^2 - R^2)$$

Volumenstrom \dot{V}

$$\dot{V} = 2\pi \int_{0}^{R} u(r) r dr \qquad \dot{V} = -\frac{\pi R^{4}}{8\eta} \left[\left(\frac{\partial p}{\partial x} \right) - \rho g \sin \alpha \right]$$

es sei
$$\frac{\Delta p}{l} = -\frac{\partial p}{\partial x}$$

$$\longrightarrow \qquad \dot{V} = \frac{\pi R^{4}}{8\eta} \left[\frac{\Delta p}{l} + \rho g \sin \alpha \right]$$

für $\alpha = 0$ gilt:
$$\dot{V} = \frac{\pi R^{4}}{8\eta} \frac{\Delta p}{l}$$

Poiseuille, Hagen ≈ 1840

Hagen-Poiseuille Gesetz der Rohrströmung

 $\overline{u} = \frac{\dot{V}}{\pi R^2}$

mittlere Geschwindigkeit :

$$\overline{u} = \frac{R^2}{8\eta} \left[\left(\frac{\Delta p}{l} \right) + \rho g \sin \alpha \right]$$

maximale Geschwindigkeit :

$$u_{\max} = u(r=0)$$

$$u_{\max} = \frac{R^2}{4\eta} \left[\frac{\Delta p}{l} + \rho g \sin \alpha \right] = 2\overline{u}$$

bzw.
$$\frac{u}{u_{\text{max}}} = 1 - \left(\frac{r}{R}\right)^2$$

Vernachlässigung der Gravitation :

$$\tau = -\left(\frac{\partial p}{\partial x}\right)\frac{r}{2}$$

Wandschubspannung au_w

$$\tau_w = \frac{R}{2} \frac{\Delta p}{l}$$

Betrachtungen zur Rohrreibung ($\alpha=0$)

$$\frac{\Delta p}{\frac{\rho}{2}\overline{u}^{2}} = \frac{8\eta l}{R^{2}\frac{\rho}{2}\overline{u}} = \frac{64\eta}{D\rho\overline{u}}\frac{l}{D} = \frac{2\tau_{w}l}{R^{2}\frac{\rho}{2}\overline{u}^{2}} = \frac{8\tau_{w}}{\rho\overline{u}^{2}}\frac{l}{D}$$
$$\frac{8\tau_{w}}{\rho\overline{u}^{2}} = \frac{64\eta}{D\rho\overline{u}} = \frac{64}{Re}$$
$$Re = \frac{\rho\overline{u}D}{\eta} \longrightarrow \text{Reynolds Zahl}$$
$$man \text{ definiert die Rohrreibungszahl } \lambda \qquad \lambda = \frac{8\tau_{w}}{\rho\overline{u}^{2}} = \frac{64}{Re} \quad \text{(laminare Strömung)}$$

Rohreinlaufstrecke, ausgebildete Strömung

Einlaufstrecke : Bereich, in den das Fluid in das Rohr eintritt

Einlaufstrecke l_e : Strecke zur Umwandlung des Rechteckprofils in ausgebildetes Profil.

ausgebildete Strömung : $u \neq f(x)$

$$\frac{I_e}{D} = 0.06 \, \text{Re}$$
 (laminare Strömung)

 $l_{e,turb.} < l_{e,lam.}$

Einlaufstrecke bedingt zusätzlichen Druckverlust

laminare Strömung durch kreisförmige Rohre

$$1.12 \leq \zeta_e \leq 1.45$$
 (Experiment)

Strömungsform = $f(u, \rho, \eta, D) \rightarrow g(\text{Re})$

Übergang laminar – turbulent = f(Geometrie des Einlaufs, Oberflächenbeschaffenheit, Rohrvibr.)

Richtwerte für die Strömungsbereiche (kreisförmige Rohre) :

$Re \leq 2100$	laminar
2100 < Re < 4000	transitionell
$4000 \leq Re$	turbulent

mögliches Experiment zur Realisation

Turbulente Schubspannung

chaotische und zufällige Schwankungsbewegungen kennzeichnen turbulente Strömungen

Auflösung aller Skalen ist für technolog, relevante Fälle heutzutage unmöglich

- Beschreibung durch gemittelte Größen
- Zeitliche Mittelung nach Reynolds

Zerlegung nach Reynolds (f: beliebige Strömungsgröße)

$$f = \bar{f} + f'$$

wobei

$$\bar{f} = \frac{1}{T} \int_{t}^{t+T} f(x, y, z, t) dt$$
 zeitlicher Mittelwert
 f' Schwankungsanteil

T >> Schwankungsdauer

T << Instationarität

Es ist

$$\overline{f}' = \frac{1}{T} \int_{t}^{t+T} \left(f - \overline{f} \right) dt = \frac{1}{T} \left[\int_{t}^{t+T} f dt - \overline{f} \int_{t}^{t+T} dt \right] = \frac{1}{T} \left(T\overline{f} - T\overline{f} \right) = 0$$

$$\overline{(f')^2} = \frac{1}{T} \int_t^{t+T} (f')^2 dt > 0$$

ebenso: $\overline{f'g'} > 0$ oder $\overline{fg'} < 0$ (*i.a.*)

selten : $\overline{f' g'} = 0$

weitere Operationen

$$\overline{f} + \overline{g} = \overline{f} + \overline{g}$$

$$\overline{\overline{f} \cdot g} = \overline{f} \cdot \overline{g}, \quad \overline{\overline{f}} = \overline{f}$$

$$\frac{\overline{\partial f}}{\overline{\partial y}} = \frac{\overline{\partial f}}{\overline{\partial y}} \qquad \overline{f \cdot g} \neq \overline{f} \cdot \overline{g}$$

$$\overline{\int f dy} = \int \overline{f} dy$$

Maß für die Turbulenz \rightarrow Turbulenzgrad *Tu*

$$Tu = \frac{1}{u_{\infty}} \sqrt{\frac{1}{3} \left(\overline{u'^2} + \overline{v'^2} + \overline{w'^2} \right)}$$

isotrope Turbulenz :

$$u' = v' = w' \qquad \Longrightarrow \qquad Tu = \sqrt{\frac{{u'}^2}{u_\infty}}$$

Windkanäle :

$$2 \times 10^{-4} \le Tu \le 10^{-2}$$
Analyse der turbulenten Rohrströmung

-Impulssatz

Impulssatz zeitlich gemittelt :

$$\frac{1}{T}\int_0^T \left[\int_{KV} \frac{\partial}{\partial t} (\rho \vec{v}) dV + \int_{KF} \rho \vec{v} (\vec{v} \cdot \vec{n}) dA\right] dt = \frac{1}{T} \int_0^T \left(\vec{F}_p + \vec{F}_r\right) dt$$

mit

$$\vec{v} = (\vec{u} + u')\vec{i} + v'\vec{j}$$

Druckkräfte

Bilanz
$$\implies (p_1 - p_2) 2\pi r dr$$

 $\longrightarrow \frac{1}{T} \int_0^T \left[\int_0^r (p_1 - p_2) 2\pi r dr \right] dt = (p_1 - p_2) \pi r^2$

Reibungskräfte

Bilanz
$$\Rightarrow -2\pi L d(r\tau)$$
 (vgl. laminare Rohrströmung)
 $\rightarrow \frac{1}{T} \int_0^T \left[-\int_0^{r\tau} 2\pi L d(r\tau) \right] dt = -\tau 2\pi rL$
lokale Beschleunigung : stationär $\frac{\partial \overline{u}}{\partial t} \rightarrow 0$
 $\frac{\partial \overline{f'}}{\partial t} = \frac{\partial \overline{f'}}{\partial t} = 0$ mit $f' = \begin{cases} u' \\ v' \end{cases}$

Impulsfluss durch KF

Impulsbilanz am Element liefert für

$$\int_{KF} \rho \vec{v} (\vec{v} \cdot \vec{n}) dA$$

$$-\rho(\overline{u}+u')(\overline{u}+u')2\pi r dr + \rho(\overline{u}+u')(\overline{u}+u')2\pi r dr$$
$$-\rho\left[(\overline{u}+u')v' - \frac{d(\overline{u}+u')v'}{dr}\frac{dr}{2}\right]2\pi\left(r - \frac{dr}{2}\right)L$$
$$+\rho\left[(\overline{u}+u')v' + \frac{d(\overline{u}+u')v'}{dr}\frac{dr}{2}\right]2\pi\left(r + \frac{dr}{2}\right)L = \rho 2\pi L d\left(r(\overline{u}+u')v'\right)$$

$$\Rightarrow \int_{0}^{r(\overline{u}+u')v'} \rho 2\pi Ld(r(\overline{u}+u')v') = \rho 2\pi Lr(\overline{u}+u')v'$$
$$\frac{1}{T}\int_{0}^{T} \overline{u}v'dt = \frac{\overline{u}}{T}\int_{0}^{T} v'dt = 0$$
$$\frac{1}{T}\int_{0}^{T} \rho 2\pi Lr(\overline{u}+u')v'dt = \rho 2\pi Lr\frac{1}{T}\int_{0}^{T} u'v'dt = \rho 2\pi Lr\overline{u'v'}$$

Zusammenfassung aller Terme

$$2\pi r L\rho \,\overline{u'v'} = (p_1 - p_2)\pi \,r^2 + 2\pi \,r L\eta \,\frac{d\overline{u}}{dr}$$

bzw.

$$(p_2 - p_1)\frac{r}{2L} = -\rho \,\overline{u'v'} + \eta \,\frac{d\overline{u}}{dr}$$

 $-\rho \overline{u'v'}$: turbulente Schubspannung τ_t

$$\rightarrow \tau = -\rho \,\overline{u'v'} + \eta \frac{d\overline{u}}{dr} = \tau_t + \tau_l$$
$$\tau_t > 0 \rightarrow \tau > \tau_l$$

Kräftegleichgewicht in differentieller Form

$$\frac{dp}{dx} + \frac{1}{r}\frac{d}{dr}(r\tau) = 0 \qquad \qquad p = f(x), \tau = f(r)$$

viskose Unterschicht : molekulare Schubspannung wesentlich

äußere Schicht : turbulente Schubspannung $au_t >> au_l$

 $\rightarrow \tau_t \approx (100 \div 1000) \tau_l$

Bestimmung des Geschwindigkeitsprofils u(r) nur möglich, wenn u, 'v 'bekannt Gleichung für $-\rho \overline{u'v'}$?

Prandtlsche Mischungsweghypothese

Reynoldsche Ansatz $\Rightarrow -\rho \overline{u'v'}$ als neue unbekannte Variable

```
\implies zu wenig Gleichungen zur Lösung
```

zur Schließung des Systems wird eine zusätzliche Gleichung benötigt

Schließung: Zusammenhang zwischen den gemittelten und den Schwankungsgrößen wird postuliert.

laminare Strömun

g :
$$\tau_l = \eta \frac{d\overline{u}}{dy}$$

turbulente Strömung : $\tau_t = -\rho \,\overline{u'v'} = \eta_t \, \frac{d\overline{u}}{dv}$ (Boussinesq)

 η_t : turbulente oder scheinbare Wirbelviskosität

Turbulenz (Bild der Struktur) :

Kaskade der Wirbel \rightarrow kleine Wirbel in der Größe der Partikel bis hin zu großen Wirbeln mit Durchmessern der charakteristischen Länge.

Wirbelbewegung ist zufällig.

Massentransport mit \bar{u}

- \Rightarrow gesteigerter Impulsaustausch
- $\Rightarrow \tau_t > \tau_l; \eta_t \text{ keine Stoffgröße}$

gesucht : $\eta_t = f(\overline{u}, \overline{v})$

Ansatz von Prandtl :

turbulente Grenzschicht enthält Strömungsballen, diese bleiben eine gewisse Zeit bestehen.

Transport zwischen $y_1 - l$ und y_1

$$\Delta u_{-} = \overline{u}(y_{1}) - \overline{u}(y_{1} - l) \approx l \left(\frac{d\overline{u}}{dy}\right)_{y_{1}}$$

Transport zwischen $y_1 + l$ und y_1

$$\Delta u^{+} = \overline{u}(y_{1} + l) - \overline{u}(y_{1}) \approx l \left(\frac{d\overline{u}}{dy}\right)_{y_{1}}$$

$$\Delta u_{-}, \Delta u^{+} : \text{turbulente Schwankungen!}$$
$$\overline{|u'|} = \frac{1}{2} \left(\left| \Delta u_{-} \right| + \left| \Delta u^{+} \right| \right) = l \left| \frac{d\overline{u}}{dy} \right|_{y_{1}} \right|$$

l : Mischungsweg (Prandtl)

$$v' \sim u' \Rightarrow \overline{|v'|} = konst . \overline{|u'|} = konst . l |\frac{d\overline{u}}{dy}|$$

Zusammenhang : $\overline{u'v'}$ mit $\overline{|u'|}$ und $\overline{|V'|}$

$$v' > 0 \rightarrow u' < 0$$
 (i. a.)
 $v' < 0 \rightarrow u' > 0$ (i. a.)

$$\Rightarrow u'v' < 0$$

$$\Rightarrow u'v' = -konst.|u'||v'| = -const.l^2 \left(\frac{d\overline{u}}{dy}\right)^2$$

$$const \, . \, l^2 = \sqrt{kl}\sqrt{kl} = \hat{l}^2$$
$$l = \hat{l}$$

$$\tau_{t} = -\rho \,\overline{u'v'} = \rho l^{2} \left| \frac{d\overline{u}}{dy} \right| \frac{d\overline{u}}{dy} \longrightarrow \qquad \eta_{t} = \rho l^{2} \left| \frac{d\overline{u}}{dy} \right|$$
Prandtlsche Mischungsweghypothese

häufig : l = f (charakteristische Länge) \rightarrow Lösung möglich

Universelles Wandgesetz

Impulssatz der Rohrströmung :

$$\frac{p_1 - p_2}{2L} (R - y) = \eta \frac{d\overline{u}}{dy} + \rho l^2 \left| \frac{d\overline{u}}{dy} \right| \frac{d\overline{u}}{dy}$$

mit $y = R - r$

Geschwindigkeitsverteilung nicht direkt mittels Integration zu bestimmen

 \rightarrow Annahmen bzgl. τ_l und τ_t

gesucht : $\bar{u}(y)$ es ist : $y_* \ll R!$

 $y > y_*: \quad \text{turb. Terme} >> \text{Trägheitsmomente, laminare Spannungsterme}$ $\tau_t \stackrel{!}{=} konst. \stackrel{!}{=} \tau_w = \rho l^2 |\frac{d\overline{u}}{dy}| \frac{d\overline{u}}{dy} \quad f \ddot{u}r \ 0 < y < y_*$

Ansatz für l : l = ky, wobei k = 0, 4 aus Exp.

$$\longrightarrow \tau_w = \rho k^2 y^2 \left(\frac{d\overline{u}}{dy}\right)^2$$

Annahme : $\overline{u} = \overline{u}(\rho, \tau_w, \nu, y)$

$$ky \frac{d\overline{u}}{dy} = \sqrt{\frac{\tau_w}{\rho}} = u_* \quad : \text{Schubspannungsgeschwindigkeit}$$
$$\frac{1}{u_*} d\overline{u} = \frac{1}{k} \frac{dy}{y}$$

Integration $\rightarrow \quad \frac{\overline{u}}{u_*} = \frac{1}{k} \ln y + c_1 \qquad f \overline{u}r \ y > y_*$

 c_1 aus Anpassung von $\overline{u}|_{y>y_*}$ an $\overline{u}|_{y<y_*}$

 $y < y_*$ (zähe Unterschicht)

$$\tau_{w} = \eta \frac{d\overline{u}}{dy} \qquad \text{bzw.}$$
$$\frac{\tau_{w}}{\rho} = u_{*}^{2} = v \frac{d\overline{u}}{dy}$$
$$\rightarrow \qquad \frac{\overline{u}}{u_{*}} = \frac{u_{*}y}{v} = y^{+}$$

$$y_* \text{ aus } \overline{u}(y = y_*)/u_* = konst. = c_2$$

 $y_* = c_2 \frac{v}{u_*}$

 $\overline{u}_* = \overline{u}(y = y_*)$ in das In-Gesetz einführen

$$\frac{\overline{u}_{*}}{u_{*}} = \frac{1}{k} \ln y_{*} + c_{1} = \frac{1}{k} \ln \frac{v}{u_{*}} + \frac{1}{k} \ln c_{2} + c_{1} \implies c_{1}$$
$$\frac{\overline{u}}{u_{*}} = \frac{1}{k} \ln y - \frac{1}{k} \ln \frac{v}{u_{*}} + \frac{\overline{u}_{*}}{u_{*}} - \frac{1}{k} \ln c_{2}$$

$$\frac{\overline{u}}{u_*} = \frac{1}{k} \ln \frac{yu_*}{v} + C \qquad y \ge y_*$$

universelles Wandgesetz für turbulente Strömungen bzw. logarith. Wandgesetz

für k = 0,4; C = 5,5 (Exp., glatte Rohre)

$$\frac{\overline{u}}{u_*} = 2.5 \ln y^+ + C$$

schematische Darstellung von $\bar{u}(r)$:

Bemerkung : Experimente zeigen, dass das universelle Wandgesetz gültig ist für : $y_* < y \le R$

mit der maximalen Geschwindigkeit $\overline{u}_{max} = \overline{u}(y = R)$

mittlere Strömungsgeschwindigkeit \overline{u}_m

$$\overline{u}_{m} = \frac{\dot{V}}{\pi R^{2}} = \frac{1}{\pi R^{2}} \int_{0}^{R} 2\pi \overline{u}(r) r dr = \frac{2}{R^{2}} \int_{0}^{R} \overline{u}(r) r dr$$
$$\overline{u}_{m} = 2 \int_{0}^{1} \left[\overline{u}_{\max} + \hat{u}_{*} \ln \left(1 - \frac{r}{R} \right) \right] \frac{r}{R} d\left(\frac{r}{R} \right)$$

Integral des In-Terms : mit
$$\frac{y}{R} = 1 - \frac{r}{R}$$

 $-\int_{1}^{0} \ln\left(\frac{y}{R}\right) d\left(\frac{y}{R}\right) + \int_{1}^{0} \left(\frac{y}{R}\right) \ln\left(\frac{y}{R}\right) d\left(\frac{y}{R}\right)$
 $= -\left[\frac{y}{R}\left(\ln\left(\frac{y}{R}\right) - 1\right)\right]_{1}^{0} + \left[\left(\frac{y}{R}\right)^{2}\left(\frac{1}{2}\ln\left(\frac{y}{R}\right) - \frac{1}{4}\right)\right]_{1}^{0} = -\frac{3}{4}$
 $\longrightarrow \quad \overline{u}_{m} = \overline{u}_{max} \quad 2.75 \quad \text{(theoretisch)}$

 $\implies \frac{u_m}{u_*} = \frac{u_{\text{max}}}{u_*} - 3.75 \quad \text{(theoretisch)}$

experimentell ermittelt :

$$\frac{\overline{u}_m}{u_*} = \frac{\overline{u}_{\max}}{u_*} - 4.07$$

Universelles Widerstandsgesetz

in technischen Anwendungen ist der strömungsmechanische Verlust entscheidend.

 \longrightarrow Zusammenhang $\lambda = f(Re)$

Definition von λ

$$\lambda = \frac{8\tau_w}{\rho \overline{u}_m^2} = 8 \frac{u_*^2}{\overline{u}_m^2}$$

es ist $\frac{\overline{u}_m}{u_*} = \frac{\overline{u}_{max}}{u_*} - 3.75 = 2.5 \ln\left(\frac{Ru_*}{v}\right) + 5.5 - 3.75 = 2.5 \ln\left(\frac{Ru_*}{v} + 1.75\right)$
mit $\frac{\overline{u}_m}{u_*} = \sqrt{\frac{8}{\lambda}}$
 $\frac{Ru_*}{u_*} = \frac{u_*}{\overline{u}_*} \frac{\overline{u}_m 2R}{2v} = \operatorname{Re} \sqrt{\lambda} \frac{1}{4\sqrt{2}}$
 $\implies \frac{1}{\sqrt{2}} = \frac{2.5}{\sqrt{8}} \ln\left(\operatorname{Re} \sqrt{\lambda}\right) + \frac{2.5}{\sqrt{8}} \ln\left(\frac{1}{4\sqrt{2}}\right) + \frac{1.75}{\sqrt{8}}$
 $\frac{1}{\sqrt{\lambda}} = 0.884 \ln\left(\operatorname{Re} \sqrt{\lambda}\right) - 0.913$

bzw. da
$$ln(x) = log(x) / log(e)$$

$$\frac{1}{\sqrt{\lambda}} = 2.035 \log(\operatorname{Re}\sqrt{\lambda}) - 0.913$$

Anpassung der Konstanten durch Experimente

$$\implies \frac{1}{\sqrt{\lambda}} = 2.0 \log \left(\operatorname{Re} \sqrt{\lambda} \right) - 0.8$$

universelles Widerstandsgesetz, vollturbulente Strömung, kreisförmige Rohre, hydraulisch glatt.

empirische Näherung von Blasius :

$$\lambda = \frac{0.316}{\sqrt[4]{\text{Re}}}$$

Turbulente Strömung durch rauhe Rohre

strömungsmechanische Verluste in turbulenten Strömungen = f (Oberflächengüte) turbulente Strömung \rightarrow zähe Unterschicht

 $y_* / D << 1$

Größe der Rauhigkeit $\rightarrow y_*$

 \rightarrow Verluste = f (Wandrauhigkeit)

Maß für die Wandrauhigkeit

Bezeichnung rauh oder glatt abhängig von

 $\frac{\text{Rauheitshöhe}}{\text{Dicke der Unterschicht}} = \frac{k}{y_*}$

bzw. mit $y_* \sim \frac{\nu}{u_*}$ $\frac{k}{y_*} \sim \frac{ku_*}{\nu}$

 $k < y_*$: hydraulisch glatte Rohre

 $y_* = f(\text{Re}) \Longrightarrow \text{Rohrbezeichnung} = f(\text{Re})$

 $k > y_*$: vollkommen rauhe Rohre

vollkommen rauhe Strömung durch kreisförmige Rohre

$$\lambda = f(\frac{k_s}{R}) \quad \text{von Kármán} \qquad k_s :\text{Sandrauheit}$$
Voraussetzung :
$$\frac{u_*}{\nu} \sim \frac{1}{k_s}$$

$$\longrightarrow \qquad \frac{\overline{u}_m}{u_*} = 2.5 \ln\left(\frac{R}{k_s}\right) + \frac{4.75}{\text{(angepasste Konstante)}}$$
mit
$$\frac{\overline{u}_m}{u_*} = \sqrt{\frac{8}{\lambda}} \qquad \lambda = \frac{8\tau_w}{\rho \overline{u}_m^2}$$

$$\longrightarrow \qquad \frac{1}{\sqrt{\lambda}} = 0.884 \ln\left(\frac{R}{k_s}\right) + 1.679$$
bzw.
$$\frac{1}{\sqrt{\lambda}} = 2.035 \log\left(\frac{D}{k_s}\right) + 1.067$$
experimentelle Anpassung :
$$\frac{1}{\sqrt{\lambda}} = 2.0 \log\left(\frac{D}{k_s}\right) + 1.14$$

quadratisches Widerstandsgesetz für λ , vollkommen rauhe Rohre, kreisförmiger Querschnitt

Übergangsbereich zwischen glatt und rauh

Colebrook auf der Basis von Messdaten von Nikuradse

$$\frac{1}{\sqrt{\lambda}} = -2.0 \log \left(\frac{\frac{k_s}{D}}{3.7} + \frac{2.51}{\text{Re}\sqrt{\lambda}} \right)$$

$$\frac{1}{\sqrt{\lambda}} \approx 2.0 \log \left[\frac{\text{Re}\sqrt{\lambda}}{1 + 0.1(\frac{k_s}{D}) \text{Re}\sqrt{\lambda}} \right] - 0.8$$

gültig im gesamten nichtlaminaren Gebiet

 $k_s \rightarrow 0$: hydaulisch glatte Rohre

 $Re\!\rightarrow\!\infty$: vollkommen rauhe Rohre

die natürliche Rauheit in der Praxis wird anhand von Tabellen auf die Größe $\frac{k_s}{D}$ umgerechnet.

 \longrightarrow λ -Werte : <u>Moody</u>-Diagramm bestimmbar

