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Chapter 1

Computational Fluid Dynamics I

Introduction

Computational Fluid Dynamics (CFD) is a field of physics, which is concerned with the
numerical solution of the governing equations describing a fluids motion. These equations
are usually systems of partial differential equations for which analytical solutions are diffi-
cult or even impossible to find. With CFD methods, numerical solutions of fluid dynamical
problems can be obtained, which allows in principle a prediction of any flow problem. Con-
tinuous improvements of the numerical solution methods and increasing computing power
have made CFD become an important factor in science and engineering. Applications can
be found wherever flow problems play an important role, e.g. the aerospace and automotive
industry, but also in the fundamental research of flow phenomena, such as turbulence or
combustion research.

CFD is based on the discrete approximation of the basic differential problems, e.g. the
transformation of differentials into finite differences at discrete points of an integration
domain. The approximation causes truncation errors which leads to a divergence of the
numerical from the exact solution of the flow problem. Therefore, the most important
effort of computational fluid dynamics is the formulation of discrete approximations such
that the error remains limited and to guarantee that the numerical solution approaches the
exact solution with increasing grid resolution, i.e. with decreasing step sizes (convergence
of the numerical problem).

This course will explain the basics of the formulation of the governing equations of fluid
mechanics with difference approximations. Section 1.1 introduces the governing equations
in their most important formulations and approximations. A mathematical classification
of these equations is performed in section 1.2. The basics of the dicrete formulation of
partial differential equations are summarized in section 1.3. The derivation of consistent
difference approximations and conditions for numerical stability and convergence of initial
value problems are discussed. The iterative solution of elliptic partial differential equations,
such as Poisson’s equation and the Laplace equation are considered in section 1.4. The most
important iteration schemes are discussed in this context.

In the second chapter of this course, important equqation systems in fluid mechanics
are discussed. In the first section of chapter two, i.e., section 2.1, the numerical integration
of Prandtl’s boundary layer equations is discussed and a solution method is developed. In
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the further sections of this course, the basics of the numerical solution of the Euler equa-
tions for compressible, unsteady flows are presented. Solution schemes are first introduced
for hyperbolic scalar equations in section 2.2. Subsequently, different form of the Euler
equations are introduced in the next section 2.3. The solution of this hyperbolic, nonlinear
system is one of the most important tasks in computational fluid dynamics. This is not
only relevant for the simulation of inviscid flows, but also is a prerequisite for the solution of
the Navier-Stokes equations. The properties of the Euler equations are discussed including
continuous as well as discontinuous solutions such as shock waves, see section 2.3.3. An ap-
propriate numerical description of discontinuous solutions requires a so called conservative
discretization. The most important schemes for such a discretization are presented and
their properties are demonstrated for a one-dimensional model problem in section 2.4.4.
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1.1 Governing equations of fluid dynamics
• The flow of a continuum, i.e., a gas or liquid, is described by the conservation laws

of mass, momentum and energy.

• Additional relations are necessary for the solution of these conservation equations:
Caloric equation of state e.g. e = cv T
Thermal equation of state e.g. p = ρRT
Formulations for transport coefficients e.g. η = η(T ), λ = λ(T )

• The initial and boundary conditions for the conservation equations define the specific
flow problem.

1.1.1 General formulation of the conservation equations

Integral formulation of the conservation equations

The integral form of the conservation equations is obtained from the fundamental conser-
vation law of classical physics. This principle is applied to a control volume τ in a fluid
flow with the surface A. To each surface element dA of A a normal vector ~n is assigned.

τ

dA

n

v

A

Figure 1.1.1: Control
volume τ with the sur-
face A, the normal vec-
tor ~n and the velocity
vector ~v.

The conservation principle for the volume τ can be formu-
lated in a general way for the conserved quantities mass, mo-
mentum and energy per volume unit:

Temporal
change of the
conservation
quantities ~U in
the volume τ

+

Generalized
flux ~H (fluxes,
stresses) across
the surface A

=
Effect of the vol-
ume forces ~Fvol
exerted on τ

The mathematical formulation of these items yields the integral
form of the conservation equations:∫

τ

∂~U

∂t
dτ +

∮
A

~H · ~ndA =

∫
τ

~Fvol dτ

In the above equations ~U is the vector of conservation quantities with the elements mass/volume
(ρ), momentum/volume (ρ~v) and energy/volume (ρE = ρ (e+ 1

2
~v 2)).

~U =

 ρ
ρ~v
ρE


The generalized flux vector ~H summarizes the effects of the fluxes and the stresses.

The first component of ~H describes the mass flow ρ~v, the second component includes the
momentum flux ρ~v ~v and the stress tensor σ, the third component is composed from the
energy flux ρ~v E the effect of the stresses σ~v and the heat flux ~q :
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~H =

 ρ~v
ρ~v~v + σ

ρE~v + σ~v + ~q


The vector ~Fvol represents the volume forces. It includes e.g. gravity ~fvol = ρ~g. The effects
of the volume forces ~fvol · ~v includes :

~Fvol =

 0
~fvol
~fvol · ~v



Component wise the conservation equations for mass, momentum and energy are:

∫
τ

∂ρ

∂t
dτ +

∮
A

[ρ~v ] · ~n dA = 0∫
τ

∂ρ~v

∂t
dτ +

∮
A

[ρ~v~v + σ] · ~n dA =

∫
τ

~fvol dτ∫
τ

∂ρE

∂t
dτ +

∮
A

[ρE~v + σ~v + ~q ] · ~n dA =

∫
τ

~fvol · ~v dτ

The uniform appearance of the conservation equations for mass, momentum and en-
ergy and as a consequence of the direct applicability on grid defined control volumes, the
integral form of the conservation equations is an important starting point for numerical
discretization schemes (e.g. finite volume method).
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Differential formulation of the conservation equations

The integral form of the conservation equations can be transferred into a system of partial
differential equations by means of Gauss theorem. This directly delivers the conserva-
tive, respectively the divergence form of the conservation equations. This form is also an
important starting point for the numerical discretization.

Further differential formulations of the conservation equations can be derived by in-
troducing other dependent variables instead of the conserved variables ~U . They are most
often called non-conservative formulations. But apart from few exceptions (e.g. boundary
layer equations), they play a minor role in the numerical discretization. Nevertheless, they
are often better suited for the analysis of the solution behavior conservative formulations.

a) Conservative (Divergence-) form:

Under the assumption of functions that are continuous and can be derived to a suitable
degree in space and time, the integral form:∫

τ

∂~U

∂t
dτ +

∮
A

~H · ~n dA =

∫
τ

~Fvol d τ

can be transferred into a differential form by application of the Gaussian Integral Theorem:∮
A

~H · ~n dA =

∫
τ

∇ · ~H d τ

and differentiation for the volume τ :

∂~U

∂t
+ ∇ · ~H = ~Fvol

This system of partial differential equations is generally called the conservative form or
divergence form (because of ∇ · ~H) of the conservations equations. The divergence form
of the conservation equations is like the integral form an important starting point for the
numerical solution.

Considering the components of the vector of the specific conservation quantities ~U , the
generalized flux vector ~H = ~H (~U) and the vector of volume forces ~Fvol (fvol) the system
of conservation equations for mass, momentum and energy is obtained:

∂ρ

∂t
+∇ · ρ~v = 0

∂ρ~v

∂t
+∇ · (ρ~v~v + σ) = ~fvol

∂ρE

∂t
+∇ · (ρE~v + σ~v + ~q ) = ~fvol · ~v
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b) Non-conservative forms
If instead of the conservation quantities ~U another set of conservation quantities (e.g.

ρ,~v, E) is chosen as dependent variables, the non-conservative form is obtained. In this
case the divergence form can not be preserved and variable coefficients in front of the
differentials occur, typically indicating the non-conservative form.

A non-conservative form is obtained for instance when a moving system with velocity
~v is chosen (Lagrangian formulation). Here, the temporal change in the moving system is
obtained as the “substantial derivate”:

D

Dt
=

∂

∂t
+ ~v · ∇

With this the conservation equations can be written in the following form:

Dρ

Dt
+ ρ∇ · ~v = 0

D~v

Dt
+

1

ρ
∇ · σ =

1

ρ
~fvol

DE

Dt
+

1

ρ
∇ · (σ~v + ~q ) =

1

ρ
~fvol · ~v

This system is only one possible non-conservative formulation. Especially for the energy
law, several different forms are possible, e.g.:

ρ
De

Dt
+ σ · ∇~v + ∇ · ~q = 0

Thermal and caloric state equations

The description of compressible flows requires additional relations between the thermal and
caloric state quantity for the closure of the conservation equations. The following equations
are valid for an thermal and caloric perfect gas (e.g. air for temperatures up to 800 K):

• Thermal state equation:
p = ρRT

• Caloric state equation:

e = cv T h = e+ p/ρ = cp T with cp = const. and cv = const.

With this the relation between pressure p and inner energy e becomes:

p = (γ − 1) ρ e with γ =
cp
cv
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Transport coefficients

For the calculation of shear stresses and the heat flow closure assumptions are necessary
which couple these quantities with the flow variables. One decides between laminar flows
on the one hand and turbulent flows on the other hand.

For most fluids in laminar flows the behavior of a Newtonian fluid can be assumed which
states the linear dependence of the shear stress from the velocity gradient, e.g. τ = −η du

dy
.

In analogy to this Fourier’s law states the linear relationship between the heat flux and the
temperature gradient, i.e. ~q = −λ∇T .
The proportionality coefficients are the transport coefficients for the molecular momentum
exchange (dynamic viscosity η) and for the energy exchange (heat conductivity λ). These
are material constants and depend on the thermodynamic state of the fluid. For gases the
viscosity is essentially a function of the temperature which can be approximated by a power
law:

η

η0

=

(
T

T0

)ω
with .5 < ω < 1 (Left ω = .72 )

Assuming a constant Prandtl number Pr = cp η

λ
and constant cp value the heat conductivity

is proportional to the viscosity.

The mathematical formulation of the mechanisms in turbulent flows is much more chal-
lenging than for laminar flow and not completely solved until today. This is mainly due
to the statistical fluctuations of the momentum and energy exchange. Most approaches
for the solution of turbulent flows are based on Reynolds averaging theory (see e.g. course
fluid dynamics II). In this theory the temporal flow quantity f is split into a time averaged
mean value f̄ and a fluctuating part f ′. After introducing this approach into the conser-
vation equations and temporal averaging one obtains the time averaged equations which
differ from the original equations by additional stress and heat flux components (Reynolds
stresses). Such additional components like the cross product of the velocity fluctuation
u′ v′ are further unknowns that need to be coupled with the mean quantities by closure
assumptions. A number of closure assumptions exist, starting from two-equation models
(e.g k − ε model) until the simpler algebraic models. One of the most simple algebraic
closure assumptions is given by Prandtls mixing length hypothesis

u′ v′ = −l2 |∂ū
∂y
| ∂ū
∂y

= −ηturb
∂ū

∂y

Such an eddy viscosity approach allows to retain the assumption of a Newtonian fluid.
This is achieved by replacing the viscosity η with the effective viscosity which consists of
the sum of the laminar and the turbulent viscosity, i.e. ηeff = ηlam + ηturb. Therefore, the
general structure of the conservation equations remains unchanged.

1.1.2 Conservation equations in Cartesian coordinates (x,y,t)

In this section the conservation equations are derived in Cartesian coordinates and the
Navier-Stokes equations and their most important approximations for compressible flows
are described.
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The Navier-Stokes equations which describe the fluid flow, including friction and heat
conduction represent the most complete description of continuum flows. The complexity
of their solution requires a high computational effort. Therefore, approximations of these
equations are used wherever this seem physically reasonable. One of the most important
concepts in this respect is Prandtl’s boundary layer approximation which is valid for high
Reynolds numbers and attached flows. According to this theory the flow field around a
body can be split into a thin viscous boundary layer on the contour line of the body and an
inviscid outer flow. The pressure is constant normal to the contour line inside the boundary
layer and is therefore determined by the inviscid outer flow. According to this separation
of the flow, the Navier-Stokes equations can also divided in two more straightforward equa-
tion systems. For boundary layer flows the boundary layer equations are obtained, while
the inviscid outer flow is determined by the Euler equations or their approximation, the
potential equations.

In the following the effect of the volume forces is neglected (~Fvol = 0).

Definitions for Cartesian coordinates

Some definitions are necessary for the presentation in Cartesian coordinates:

Note : It is ~f =

(
f1

f2

)
= (f1 , f2)T

• Surface normal: ~ndA = (dy , −dx)T

• Volume: τ = τ(x, y)

• Nabla operator: ∇ = (∂/∂x , ∂/∂y)T

• Dyadic product of two vectors ~a~b e.g. for momentum flux ρ~v ~v

~a~b =

(
ax
ay

) (
bx
by

)
=

(
axbx axby
aybx ayby

)
• inner vector product of tensor and vector T ~a , e.g. for σ ~v or σ ~n

T ~a =

(
t11 t12

t21 t22

)(
ax
ay

)
=

(
t11 ax + t12 ay
t21 ax + t22 ay

)
• velocity: ~v = (u , v)T

• Conservation quantities: ~U = (ρ, ρu, ρv, ρE)T

with E = cv T + 1
2
(u2 + v2)

• Stress tensor with pressure and friction components σ = p I + σ

with σ =

(
σxx σxy
σxy σyy

)
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and
σxx = −η (2ux − 2

3
(ux + vy))

σyy = −η (2vy − 2
3

(ux + vy))
σxy = −η (uy + vx)

• Heat flux: ~q = (qx , qy)
T = −λ (Tx , Ty)

T

• generalized flux vector with inviscid and viscous component ~H = ~Hinv + ~Hvis

in Cartesian coordinates: ~Hinv = (Einv , Finv)
T ~Hvis = (Evis , Fvis)

T

with

Einv = (ρu , ρu2 + p , ρuv , ρuE + up)T Evis = (0 , σxx , σxy , uσxx + vσxy + qx)
T

Finv = (ρv , ρuv , ρv2 + p , ρvE + vp)T Fvis = (0 , σxy , σyy , uσxy + vσyy + qy)
T

Conservation equations for compressible flows

Navier-Stokes equations

The Navier-Stokes equations describe the viscous continuum flow and heat conduction. In
this context the Navier-Stokes equations are understood as the complete set of conservation
for mass, momentum and energy.

a) Integral form

With the above definitions the integral form can be obtained after performing the inner
product ~H · ~n dA.∫

τ

∂~U

∂t
dτ +

∮
A

(Einv + Evis) dy −
∮
A

(Finv + Fvis) dx = 0

The components E dy−F dx correspond to the normal projection of the flux ~H = (E , F )T

on a surface element dA =
√
dx2 + dy2, multiplied by dA.

b) Conservative form (Divergence form)

With the Cartesian components of ∇ and ~H the divergence form is found to be:

∂~U

∂t
+

∂

∂x
(Einv + Evis) +

∂

∂y
(Finv + Fvis) = 0

The component wise presentation of the conservation equations for mass, momentum and
energy yields:
∂
∂t
ρ + ∂

∂x
(ρu) + ∂

∂y
(ρv) = 0

∂
∂t

(ρu) + ∂
∂x

(ρu2 + p+ σxx) + ∂
∂y

(ρuv + σxy) = 0

∂
∂t

(ρv) + ∂
∂x

(ρuv + σxy) + ∂
∂y

(ρv2 + p+ σyy) = 0

∂
∂t

(ρE) + ∂
∂x

(ρuE + up+ uσxx + vσxy + qx) + ∂
∂y

(ρvE + vp+ vσyy + uσxy + qy) = 0
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c) Non-conservative form

For the above described non-conservative form with the variables ~V = (ρ , u , v , E)T and
the substantial derivative D

Dt
≡ ∂

∂t
+u ∂

∂x
+v ∂

∂y
the following system is obtained in Cartesian

coordinates:

D
Dt
ρ + ρ ∂

∂x
u + ρ ∂

∂y
v = 0

D
Dt
u + 1

ρ
∂
∂x

(p+ σxx) + 1
ρ
∂
∂y
σxy = 0

D
Dt
v + 1

ρ
∂
∂x
σxy + 1

ρ
∂
∂y

(p+ σyy) = 0

D
Dt
E + 1

ρ
∂
∂x

(up+ uσxx + vσxy + qx) + 1
ρ
∂
∂y

(vp+ uσxy + vσyy + qy) = 0

The Euler equations

One obtains the Euler equations from the Navier-Stokes equations, if the viscosity terms
and the heat conduction terms are neglected: σ = 0 and ~q = 0. This simplification causes
another solution behavior of the conservation equations. The Euler equations are treated
in detail in part II of this course.

In analogy to the Navier-Stokes equations the following forms can be presented:

a) Integral form

∫
τ

∂~U

∂t
dτ +

∮
A

(Einv) dy −
∮
A

(Finv) dx = 0

The components E dy−F dx correspond to the normal projection of the flux ~H = (E , F )T

on a surface element dA =
√
dx2 + dy2, multiplied by dA.

b) Conservative Form (Divergence-Form)

With the Cartesian components of ∇ and ~H the divergence form is found to be:

∂~U

∂t
+

∂

∂x
Einv +

∂

∂y
Finv = 0

The component wise presentation of the conservation equations for mass, momentum and
energy yields:

∂
∂t
ρ + ∂

∂x
(ρu) + ∂

∂y
(ρv) = 0

∂
∂t

(ρu) + ∂
∂x

(ρu2 + p) + ∂
∂y

(ρuv) = 0

∂
∂t

(ρv) + ∂
∂x

(ρuv) + ∂
∂y

(ρv2 + p) = 0

∂
∂t

(ρE) + ∂
∂x

(ρuE + up) + ∂
∂y

(ρvE + vp) = 0
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c) Non-conservative form

For the above described non-conservative form with the variables ~V = (ρ , u , v , E)T and
the substantial derivative D

Dt
≡ ∂

∂t
+u ∂

∂x
+v ∂

∂y
the following system is obtained in Cartesian

coordinates:

D
Dt
ρ + ρ ∂

∂x
u + ρ ∂

∂y
v = 0

D
Dt
u + 1

ρ
∂
∂x
p + 0 = 0

D
Dt
v + 0 + 1

ρ
∂
∂y
p = 0

D
Dt
E + 1

ρ
∂
∂x

(up) + 1
ρ
∂
∂y

(vp) = 0

Potential equation

Potential flows require irrotational, isoenergetic flows. The following assumptions are made:

• irrotational flow ∇ × ~v = 0, also given by the potential φ, if ~v = ∇φ or u =
φx v = φy.

• steady flow ∂
∂t

= 0

• isoenergetic flow Ht = h+ 1
2
(u2 + v2) = const.

this yields T/T0 = 1/(1 + γ−1
2
Ma2)

• isentropic flow follows from Croccos vorticity theorem (~v × (∇× ~v) = ∇Ht − T ∇S),

this yields ∇S = 0 and thus T/T0 = (ρ/ρ0)γ−1 = (p/p0)
γ−1
γ

The density ρ and the speed of sound a are in this case functions which depend on
the potential φ. They can be calculated with the isotropy relation and the energy law as
function of ~v = ∇φ.
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a) Conservative form

This form is obtained from the continuity equation and the definition of the potential

(ρ φx)x + (ρ φy)y = 0

b) Non-conservative form

A non-conservative form is obtained from the Euler equations with dp = a2 dρ for s = const.

(u2 − a2)
∂2φ

∂x2
+ 2u v

∂2φ

∂x∂y
+ (v2 − a2)

∂2φ

∂y2
= 0

Boundary layer equations

The boundary layer equations are derived from the Navier-Stokes equations by application
of Prandtl’s boundary layer approximation (see e.g.: H. Schlichting: “Grenzschichttheorie”).
The most important assumptions for this are high Reynolds numbers Re� 1 and attached
flow. For this case the viscosity is only influential in a thin layer of width δ close to the
body with the properties δ

L
∼ v

U∞
∼ 1√

Re∞
.

∂ρu

∂x
+
∂ρv

∂y
= 0

ρu
∂u

∂x
+ ρv

∂u

∂y
+

∂p

∂x
=

∂

∂y

(
η
∂u

∂y

)
∂p

∂y
= 0

ρu
∂h

∂x
+ ρv

∂h

∂y
− u

∂p

∂x
=

∂

∂y

(
λ
∂T

∂y

)
+ η

(
∂u

∂y

)2

Conservation equations for incompressible flows

Many fluids, e.g. liquids, can be considered incompressible in most domains, i.e. the
density ρ is constant. As a consequence the continuity equation is reduced to div ~v = 0
which changes the solution behavior, since there’s no time derivative in this equation.

Furthermore the pressure is no longer coupled with the density and the temperature by a
state equation. This leads to the decoupling of the energy equation from the other equations
(there still a weak coupling enforced by the transport coefficients, e.g. the viscosity η(T ),
which is neglected in this case). Therefore, the continuity and momentum equations are
sufficient for the solution of the flow.

As another result of the decoupling of the pressure, can no longer an explicit equation
be derived for the pressure that also preserves the continuity (divergence free velocity field).
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Therefore, solution schemes which are based on the equations with pressure and velocity
as variables use an iteration process in which the pressure as a parameter is iterated such
that for all times the continuity equation is fulfilled.

Navier-Stokes equations

a) ~v, p formulation

For constant density and the velocity and pressure as dependent variables the following
system of continuity and momentum equation is obtained:

∂u

∂x
+
∂v

∂y
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

1

ρ

∂p

∂x
= ν∇2u

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

1

ρ

∂p

∂y
= ν∇2v

with the Laplacian operator ∇2 = ∂2

∂x2
+ ∂2

∂y2

and the kinematic viscosity ν = η/ρ

The pressure terms are eliminated by taking the curl of the momentum equations (∇ ×
momentumequation). Then the vorticity transport equation is obtained with the z-component
of the vorticity vector ζ as the variable.

ζ =
∂v

∂x
− ∂u

∂y

The continuity equation is identically satisfied by the definition of the stream function.

∂ψ

∂y
= u ,

∂ψ

∂x
= − v

Poisson’s equation for the determination of the stream function ψ is obtained by insertion
of the stream function in the definition of ζ.
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With the above performed procedure the Navier-Stokes equations can be written as
stream function and eddy transport equation:

∂2ψ

∂x2
+
∂2ψ

∂y2
= − ζ ‖ Poisson’s equation for ψ

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
= ν∇2ζ ‖ Eddy transport equation

The pressure p can be calculated afterwards from Poisson’s equation for pressure which is
derived from the divergence of the momentum equations:

∇2 p = −ρ

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+ 2
∂u

∂y

∂v

∂x

]

Euler equations

The Euler equations for incompressible flows are obtained for diminishing viscosity (ν = 0).
In analogy to the Navier-Stokes equations there are two formulations:

a) ~v, p formulation

∂u

∂x
+
∂v

∂y
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

1

ρ

∂p

∂x
= 0

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

1

ρ

∂p

∂y
= 0

b) ψ − ζ formulation (Stream function and Eddy transport equation)

∂2ψ

∂x2
+
∂2ψ

∂y2
= − ζ ‖ Poisson’s equation for ψ

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
= 0 ‖ Eddy transport equation

The pressure p can be calculated afterwards from Poisson’s equation for pressure.
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Potential equation

The potential equations are obtained from the Euler equations for irrotational (ζ =
∂v
∂x
− ∂u

∂y
= 0) and steady ( ∂

∂t
= 0) flows. Depending on the dependent variable one

distinguishes between:

• Velocity formulation (Cauchy-Riemann equations)

The condition of irrotational flows replaces the momentum equations, while the con-
tinuity equation is retained.

∂u

∂x
+
∂v

∂y
= 0

∂v

∂x
− ∂u

∂y
= 0

• Stream function formulation

The definition of the stream function satisfies the continuity equation. Insertion in
condition of irrotational flow yields Laplace’s equation for the stream function:

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0

• Potential formulation

The definition of the potential ~v = ∇Φ yields Laplace’s equation for the potential
function, if inserted in the continuity equation:

∂2φ

∂x2
+
∂2φ

∂y2
= 0

The integration of the momentum equations in respect to the irrotational flow yields
Bernoulli’s equation for the pressure calculation:

p0 = p +
ρ

2
(u2 + v2) = const.

Boundary layer equations

Prandtl’s boundary layer equations for an incompressible flow are:

∂u

∂x
+
∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
+

1

ρ

∂p

∂x
=

∂

∂y

(
ν
∂u

∂y

)
∂p

∂y
= 0
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1.1.3 Initial and boundary conditions

The initial and boundary conditions define the flow problem which is to be solved by
solution of the conservation equations.

The number of necessary boundary conditions is given by the highest order derivative of
an independent variable. The distinction between initial and boundary conditions is deter-
mined by the type of the partial differential equation. Elliptic partial differential equations
lead to boundary value problems, i.e. the boundary conditions have to be defined on all
boundaries. Hyperbolic and parabolic partial differential equations have real characteristics
and therefore a limited region of influence for which initial conditions must be defined on
a non characteristic boundary line (initial value problem). If the region of influence is con-
strained by boundaries, additional boundary conditions must be defined (Initial-boundary
value problem).

• 1. Type (Dirichlet boundary condition)

U = g1(x, y) Variable value is defined on the boundary

e.g. no slip condition u = 0, v = 0

• 2. Type (von Neumann boundary condition)
∂U
∂n

= g2(x, y) Normal gradient of the variable is given on the boundary

e.g. adiabatic wall qn = λ ∂T
∂n

= 0

• 3. Type (linear combination of 1. and 2. type)

αU + β ∂U
∂n

= g3(x, y) Normal gradient and value are combined

e.g. ”slip” stream at the wall for dilute gases a∂u
∂n

+ u = 0

• 4. Type Periodic boundary conditions

U(x1, y1) = U(x2, y2) Boundary values of two integration boundaries C1 and
C2 equal

e.g.: Turbine blades

The most important prerequisite for the solution is the formulation of a correct problem,
i.e. little changes in the initial or boundary conditions of O(ε) may only cause little changes
in the solution of O(ε)!
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Typical boundary conditions in fluid mechanics

Domain of integration:

vt

vn

inflow
boundary

B

D
A

C
boundary
outflow

symmetry line

wall
A. Boundary condition wall:

u inviscid:
vn = 0 −→ solid wall

respectively ~v = vt −→ Tangential condition

Boundary condition for Euler and potential equation.

u

}
Wall is streamline

viscous:

BC like inviscid vn = 0
+ Additional no slip condition: vt = 0
+ aditional thermal BC: T = Tw isothermal wall

or qn = −λ∂T
∂n

= 0 adiabatic wall

B. Boundary condition symmetry line:

∂f
∂n

= 0 f = ρ, p, T, vt

vn = 0

C.+D. Boundary condition for inflow and outflow boundary:

−→ Problem dependent, since usually across an unknown flowfield
−→ Number of necessary boundary condition (i.e. variables that need to be defined)

often determined from inviscid method of characteristics

e.g. for a 2-dimensional flow the following definitions are necessary:
Ma < 1 Inflow 3 variables (e.g. To, po, u)
Ma > 1 Inflow 4 (all) variables
Ma < 1 Outflow 1 variable (e.g. p)
Ma > 1 Outflow none
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1.2 Classification and characteristic lines of partial dif-
ferential equations

Characteristic solutions are outstanding solutions of partial differential equations. These
solutions are qualified by being independent of neighboring solutions, i.e. the initial value
problem cannot be determined uniquely from such a solution curve. Mathematically this
means that the derivations cross wise of the solution curve are undetermined.

The slope of the corresponding base curve of the characteristic solution is generally
called characteristic. The characteristic lines are independent of the coordinate system and
therefore the “characteristic” property of a partial differential equation. The value of the
characteristic, real or complex determines the solution behavior of the partial differential
equations. It also serves the classification in elliptic, parabolic and hyperbolic partial
differential equations.

The characteristic lines define the physical sphere of influence. Real characteristics
(hyperbolic and parabolic equations) lead to initial value problems with limited sphere of
influence (e.g. Mach cone). Complex characteristics of elliptic equations lead to boundary
value problems with no special direction of influence.

Characteristic lines are important for numerical solution methods e.g. for the develop-
ment of stable and accurate difference schemes and for the modeling of boundary conditions.

1.2.1 First order partial differential equations

The most straightforward interpretation of the characteristic lines can be given for scalar
first order partial differential equations. These equations lead to real characteristics and
are therefore of hyperbolic type.

Condition for characteristics

The following equation will be considered for the derivation of the characteristic:

a ux + b uy = c

It is assumed that the solution u(x, y) on the solution curve C (Initial condition) is known
over the basic curve C0 defined by Ω(x, y) = const. For the presentation of the character-
istics it must first be investigated for which basic curves the cross wise derivatives of the
solution become undetermined. To achieve this the differential equations are transformed
into a coordinate system (S,Ω), where S is tangential to C0 and Ω perpendicular to C0.
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C0

C

x

y

u

SΩ

Solution surface u(x, y)

C : Characteristic solution curve
C0 : char. Basic curve Ω = const.

dy

dx

∣∣∣∣
Co

: char. Directional derivative

For the transformation (x, y)→ (S,Ω) and with the derivatives:

ux = SxuS + ΩxuΩ; uy = SyuS + ΩyuΩ

the differential equation aux + buy = c is obtained in the new coordinate system :

(aΩx + bΩy)uΩ + (aSx + bSy)uS = c

The value of the first bracketed expression, Q ≡ aΩx + bΩy is determinant for the inves-
tigation of the behavior of the cross wise derivative uΩ:

• a) The value of Q is unequal zero.

Q = aΩx + bΩy 6= 0

In this case the cross wise derivative uΩ is uniquely defined by the solution. The
neighbor solution on a curve Ω + ∆Ω can be continued unambiguously from the
solution u(x, y) on Ω = const..

→ u(Ω + ∆Ω) = u(Ω) + uΩ(Ω) ·∆Ω + · · ·

The initial value problem is uniquely determined.

• b) The value of Q is zero.
Q = aΩx + bΩy = 0

In this case the cross wise derivative uΩ is undetermined (0 · uΩ = ...). The solution
therefore only depends on the derivatives uS which are tangential to the solution
curve. The Initial value problem cannot be continued on a neighboring solution,
unambiguously.

For this case u(x, y) is called characteristic solution and the curve Ω = const. as
characteristic base curve C0 of which the derivative dy

dx
forms the characteristic. The

condition Q = 0 is accordingly called the characteristic condition.
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Characteristic and equation of the characteristic base curve

From the characteristic condition Q = 0 and the equation for the base curve Ω = const.

Q = aΩx + bΩy = 0

dΩ = Ωx dx + Ωy dy = 0

the slope of the characteristic base curve (=characteristic line) is obtained:

dy

dx

∣∣∣∣
Co

= − Ωx

Ωy

=
b

a

Integration of
dΩ

−Ωy

=
dy

dx

∣∣∣∣
Co

dx − dy =
b

a
dx − dy = 0

with the predefined initial values x0, y0 yields the equation of the base curve C0 :

y = y0 +
b

a
(x− x0) .

Thus, the characteristic base curves of the equation aux + buy = c form a group of straight
lines with the slope b/a.

C0

Ω=const

x

y

Characteristic solution

The characteristic solution (conformity condition) is the solution along the characteristic
base curve. For the presentation of this special solution the original equation will be
transformed in a new coordinate system ξ(x, y) , τ(x, y). One coordinate, in this case
ξ = const., represents the characteristic base curve Ω = const. (in this general case called
ξ = const.), while the other coordinate can be arbitrarily chosen for first order equations,
e.g. τ = x.

dξ =
b

a
dx − dy

dτ = dx
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By application of the chain rule

ux = ξx uξ + τx uτ =
b

a
uξ + uτ , uy = ξy uξ + τy uτ = −uξ

the equation a ux+ b uy = c yields the transformed equation (normal form of the equation):

∂u

∂τ

∣∣∣∣
ξ=const.

=
c

a

Integration over τ yields the characteristic solution over the base curve ξ = b
a
x−y = const.

:
u(τ, ξ) =

c

a
· τ + k (ξ)

For the initial value u0(x0, y0) on the characteristic base curve ξ = ξ0 = b
a
x0 − y0 = const.

and with τ = x one obtains:

u(x, y) =
c

a
(x− x0) + u0(x0, y0)

In the special case of c = 0 the initial solution on the characteristic line remains constant,
i.e. u(x, y) = u(ξ) = const. These types of solutions occur frequently in gas dynamics, e.g.
for the Prandtl-Meyer expansion.

y0

y1

x1

x0

x0 y0u(    ,   )

x1 y1u(   ,   )

c  (  =const)ξ0

x

y

u
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1.2.2 Second order partial differential equations

The derivation of the characteristics is performed in analogy to the first order equations.
The following equation will be taken as starting point:

L (u) = a uxx + 2 b uxy + c uyy + d (x, y, u, ux, uy) = 0

The solution u(x, y) and the lower order derivations ux and uy are assumed to be known over
the base curve C0, defined by Ω(x, y) = const. For the presentation of the characteristics
(highest order cross wise derivatives which are undetermined) the differential equation is
transformed in a coordinate system (S,Ω), with S being tangential with C0 and Ω being
perpendicular to C0.

With the transformation (x, y)→ (S,Ω) one obtains the derivatives

uxx = uΩΩ Ωx
2 + 2uSΩ Ωx Sx + uSS Sx

2 + uΩ Ωxx + uS Sxx

uyy = uΩΩ Ωy
2 + · · ·

uxy = uΩΩ ΩxΩy + · · ·

All derivatives but the second cross wise derivative, uΩΩ , are known on the solution curve.
This yields the differential equation in the new coordinate system:

L (u) = Q · uΩΩ + [∼]uΩS + [∼]uSS + [∼] = 0

with
Q = aΩx

2 + 2 bΩxΩy + cΩy
2

For the presentation of the characteristic problem it is decisive that the highest order
cross wise derivative, uΩΩ in this case, is undetermined. This is given if the characteristic
condition Q = 0 is satisfied.
With Q = 0 and the base curve Ω = const.

Q = aΩx
2 + 2 bΩxΩy + cΩy

2 = 0

dΩ = Ωxdx + Ωydy = 0

one obtains the characteristic polynomial

a

(
dy

dx

)2

− 2b
dy

dx
+ c = 0

The characteristics are found to be square roots of this polynomial:

dy

dx

∣∣∣
1,2

=
1

a

(
b ±
√
b2 − ac

)
It is decisive for the solution behavior if the characteristics are real or complex. This is
determined by the sign of the discriminant ∆:

∆ = b2 − a · c

Depending on the sign of the determinant the type of the second order partial differential
equation is classified as hyperbolic, parabolic or elliptic (in analogy to the cone intersection
equation a y2 − 2b xy + c x2 = 0).
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• hyperbolic ∆ > 0 dy
dx

∣∣∣
1
6= dy

dx

∣∣∣
2

real characteristics

• parabolic ∆ = 0 dy
dx

∣∣∣
1

= dy
dx

∣∣∣
2

real double characteristic

• elliptic ∆ < 0 dy
dx

∣∣∣
1
6= dy

dx

∣∣∣
2

complex characteristics

For systems of first order partial differential equations (e.g. Euler equations) the same
classification is used as for the equations of second order.

Canonical or normal form of second order equations

Similar to the derivation of the characteristic solution of first order equations, second order
partial differential equations can also be transformed into a typical (normal form) form.
In the normal form, given in characteristic coordinates (or combinations) the highest order
derivatives are free of coefficients.
For the equation

a uxx + 2 b uxy + c uyy + F (ux, uy, u, x, y) = 0

with the characteristics
dy

dx
=

b

a
± 1

a

√
b2 − ac

and the abbreviations: α = b
a

and β = 1
a

√
|b2 − ac| new coordi-

nates can be introduced

dξ1 = α dx − dy

dη1 = β dx

The transformation of the equation yields the following normal forms:

∂2 u

∂ξ1
2 − ∂2 u

∂η1
2

+ · · · = 0 hyperbolic PDE

∂2 u

∂ξ1
2 +

∂2 u

∂η1
2

+ · · · = 0 elliptic PDE

∂2 u

∂η1
2

+ · · · = 0 parabolic PDE

A further normal form exists for hyperbolic equations, it has the characteristic coordi-
nates

dξ = dξ1 + dη1 =
dy

dx

∣∣∣
1
dx − dy

dη = dξ1 − dη1 =
dy

dx

∣∣∣
2
dx − dy
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This normal form is:
∂2 u

∂ξ ∂η
+ · · · · · · = 0

Many equations in fluid mechanics, especially in Cartesian coordinates, occur in their
normal form and are to be classified in comparison to the normal forms.
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1.2.3 Simplified calculation of the characteristics

From the detailed derivation it can be concluded that the condition Q = 0 is sufficient
for the determination of the characteristics. Q is obtained from the transformation of
the leading Ω derivative. Therefore, in a simplified calculation a variable u(x, y) can be
considered as a function of Ω only, i.e. u(x, y) = u(Ω(x, y)). The derivatives, e.g. for x are
replaced by ux = Ωx · uΩ , uxx = (Ωx)

2 · uΩΩ + · · ·
The characteristics are then obtained from the characteristic condition Q = 0 and from
Ω = const.

1. example: First order equation
a ux + b uy = c

(aΩx + bΩy)uΩ = c

Q = aΩx + bΩy = 0
dΩ = Ωx dx + Ωy dy = 0

→ dy
dx

∣∣∣
1

= b
a
→ hyperbolic

Second example: System of equations (Cauchy-Riemannsche equations)
ux + vy = 0

uy − vx = 0

} ( ∂
∂x

∂
∂y

∂
∂y
− ∂
∂x

)(
u
v

)
= 0

Q = det
∣∣∣∣ Ωx Ωy

Ωy −Ωx

∣∣∣∣ = −Ωx
2 − Ωy

2 = 0 → Ωx
Ωy

∣∣∣
1,2

= ±
√
−1 = ±I

→ dy
dx

∣∣∣
1,2

= ± I → elliptic

Third example: Wave equation

utt − ao
2 uxx = 0

1. Path: Q = Ωt
2 − ao

2 Ωx
2 = 0 → Ωt

Ωx

∣∣∣
1,2

= ± ao
dx
dt

∣∣∣
1,2

= ± ao → hyperbolic

2. Path: Substitution q = ut , p = ux → qx = pt

qt− ao
2 px = 0

qx− pt = 0

Q = det
∣∣∣∣ Ωt −ao2 Ωx

Ωx −Ωt

∣∣∣∣ = −Ωt
2 + ao

2Ωx
2 = 0 → Ωt

Ωx

∣∣∣
1,2

= ± ao
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1.3 Basics of numerical solutions

In order to solve partial differential equations, the domain of integration is subdivided in
a grid of discrete points in the space of independent variables (physical space, time). At
these discrete points the geometrical coordinates and the dependent variables (conserved
quantities) are defined. For each grid point the differential equations are approximated
by difference equations. These equations and the discretized boundary and initial value
conditions yield a system of coupled, algebraic equations that can be solved on a computer.

The numerical solution is inaccurate because of the difference building. It is the aim of
the numerical solution to approach the exact solution of the differential problem, i.e. the
numerical solution shall converge. A solution is said to be convergent if with decreasing
step size the numerical solution turns into the exact solution. Some necessary prerequisites
must be granted to obtain convergent solutions, namely consistency and numerical stability
of the difference scheme. The foundations for these topics will be laid in this chapter.

1.3.1 Development of consistent difference expressions

In the numerical solution of partial differential equations information is only present at the
discrete points. The difference expressions which approximate the differentials at a given
point are functions of the surrounding neighbor values.
The development of difference expressions for the dependent variable is performed with a
Taylor series expansion around the discrete point. An important prerequisite for this is:

All dependent variables can be locally expanded in a series, i.e. their course is continuous
and differentiable to a suitable degree.

In the series expansion the differential is replaced by a difference approximation plus a
truncation error τ representing the unconsidered terms of the series.

∂f

∂x
→ ∆f

∆x
+ τ

The truncation error is the difference between the differential form and the corresponding
difference approximation.

τ ≡ ∂f

∂x
− ∆f

∆x

It is an important quantity for the determination of consistency, the accuracy and the so-
lution properties of difference approximations.
Difference approximations are called consistent if they approach the differential for decreas-
ing step sizes, ∆x→ 0. In this case the truncation error disappears.

lim
∆x→0

τ = lim
∆x→0

(
∂f

∂x
− ∆f

∆x

)
= 0

The truncation error includes the unconsidered higher order derivatives multiplied by pow-
ers of the step sizes. For a suitable normalization the derivatives are of order O(1) and the
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step sizes ∆x are much smaller than unity ∆x � 1. Therefore, the order of τ and with
it the discretization error are governed by the smallest power of the step size, i.e.

τ = O(∆xk) k > 0

Different choices of the considered base points and terms of the series expansion have
an impact on the truncation error and therefore on the solution behavior of a difference
approximation. As a consequence the transition from differential equation to difference
equation is not unique. Several difference approximations exist for a given differential
expression. This will be demonstrated for the important first and second order derivatives.

Difference expressions for first and second order derivatives

The difference expressions for ∂f
∂x

or ∂2f
∂x2

of a variable f(x) , given at the discrete points
xi shall be constructed (f(xi) = fi). The maximum number of base points is set to three.
The step sizes hi = xi − xi−1 may be variable.

x i x
i+1

x i−1

f
i

f
i+1

f
i−1

h
1 h2

f

x

• Taylor series expansion of fi±1 around fi :

(1) fi+1 = fi + ∂f
∂x

∣∣∣
i
· h2 + ∂2f

∂x2

∣∣∣
i
· h22

2!
+ ∂3f

∂x3

∣∣∣
i
· h23

3!
+ ∂4f

∂x4

∣∣∣
i
· h24

4!
+ · · ·

(2) fi−1 = fi − ∂f
∂x

∣∣∣
i
· h1 + ∂2f

∂x2

∣∣∣
i
· h12

2!
− ∂3f

∂x3

∣∣∣
i
· h13

3!
+ ∂4f

∂x4

∣∣∣
i
· h14

4!
+ · · ·

• Approximations for ∂f
∂x

(by combinations of (1) and (2) ) :

a) Forward difference
∂f
∂x

∣∣∣
i

= fi+1− fi
h2

+ (−∂2f
∂x2

h2
2!
− ∂3f

∂x3
h2

2

3!
+ · · · ) τ = O (h2)

b) Backward difference
∂f
∂x

∣∣∣
i

= fi− fi−1

h1
+ (∂

2f
∂x2

h1
2
− ∂3f

∂x3
h1

2

3!
+ · · · ) τ = O (h1)
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c) Central difference
∂f
∂x

∣∣∣
i

= fi+1− fi−1

h1 +h2
+ (∂

2f
∂x2

h1−h2
2
− 1

6
∂3f
∂x3

h1
3 +h2

3

h1 +h2
+ · · · ) τ = O (h1 − h2)

d) Central difference ( ∂
2f
∂x2

eliminates, more accurate than c) for h2 6= h1)
∂f
∂x

∣∣∣
i

=
h21 (fi+1−fi) +h22 (fi−fi−1)

h1 h2 (h1 +h2)
+ (−1

6
h1 h2

∂3f
∂x3

+ · · · ) τ = O (h1 · h2)

e) Central difference for constant step sizes h = h1 = h2

∂f
∂x

∣∣∣
i

= fi+1− fi−1

2h
− (−1

6
h2 ∂3f

∂x3
+ · · · ) τ = O (h2)

• Approximations for ∂2f
∂x2

a) Central difference
∂2f
∂x2

∣∣∣
i

= 2[(fi+1− fi)h1− (fi− fi−1)h2]
h1 h2 (h1 +h2)

+ (h1−h2
3
· ∂3f
∂x3

+ · · · ) τ = O(h1−h2)

b) Central difference for constant step sizes h = h1 = h2

∂2f
∂x2

∣∣∣
i

= fi+1− 2 fi + fi−1

h2
− (h

2

12
· ∂4f
∂x4

+ · · · ) τ = O (h2)

• Single sided (3 point) approximations for ∂f
∂x

and ∂2f
∂x2

with h3 = h1 + h2

x
i+1

x i
x i+2

f
i+1

f
i

h
1 h2

f
i+2

h3

f

x

Taylor series expansion of fi+1, fi+2 around fi

fi+1 = fi + ∂f
∂x

∣∣∣
i
· h1 + ∂2f

∂x2

∣∣∣
i
· h12

2!
+ ∂3f

∂x3

∣∣∣
i
· h13

3!
+ ∂4f

∂x4

∣∣∣
i
· h14

4!
+ · · ·

fi+2 = fi + ∂f
∂x

∣∣∣
i
· h3 + ∂2f

∂x2

∣∣∣
i
· h32

2!
+ ∂3f

∂x3

∣∣∣
i
· h33

3!
+ ∂4f

∂x4

∣∣∣
i
· h34

4!
+ · · ·

a) one sided difference for ∂f
∂x

∂f
∂x

∣∣∣
i

= − (fi+2− fi)h22− (fi+1− fi)h32
h2 h3 (h3−h2)

+ (h2 h3
6
· ∂3f
∂x3

+ · · · ) τ = O (h2h3)
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Constant step sizes : h = h2 = h3 / 2

∂f
∂x

∣∣∣
i

= − fi+2 + 3 fi− 4 fi+1

2h
+ (h

2

3
· ∂3f
∂x3

+ · · · ) τ = O (h2)

b) one sided difference for ∂2f
∂x2

∂2f
∂x2

∣∣∣
i

= 2·[(fi+2− fi)h2− (fi+1− fi)h3 ]
h2 h3 (h3−h2)

+ (−h3 +h2
3
· ∂3f
∂x3

+ · · · ) τ = O (h2 +h3)

Constant step sizes : h = h2 = h3 / 2

∂2f
∂x2

∣∣∣
i

= fi+2− 2 fi+1 + fi
h2

+ (−h · ∂3f
∂x3

+ · · · ) τ = O (h)

Difference schemes

The numerical solution of a differential equation is obtained by replacing the differentials
with differences. For each grid point a difference equation is obtained which is generally
equal for each point and therefore called difference scheme.
The difference equations of all grid points form a system of algebraic equations that is to
be solved. According to the different choices of differences for a derivative, there can be
different copulations of the unknowns between the grid points. One generally distinguishes
between implicit and explicit difference schemes.

Explicit difference schemes result in solution methods in which the unknown at a grid
point is directly determined from known values, since the neighboring points aren’t linked
(the solution matrix is the identity matrix). The advantage is the straightforward and thus
fast solution of the equation system. The disadvantage is a limitation of the step size,
caused by numerical instability.

In implicit schemes the unknowns at the neighboring points are coupled (structure of
the solution matrix is banded). As a consequence of the coupling a limitation of the step
size for stability reasons is generally unnecessary. On the other hand the solution takes a
lot more effort since it is performed recursively.

Examples for an implicit and an explicit scheme:

Discretization of the parabolic Fourier equation
∂u
∂t

= ν ∂2u
∂x2

ν = const. > 0

Discrete variable:

tn = n ·∆t xi = i ·∆x uni = u (xi, tn)

• Explicit scheme: Time derivative with a forward difference and space derivative with
central difference at the point tn, xi.

un+1
i −uni

∆t
= ν

uni+1− 2uni +uni−1

∆x2
+ O (∆t,∆x2)

→ Rearrangement for the unknown un+1
i

un+1
i = uni + σ(uni+1 − 2uni + uni−1) with σ = ν ∆t

∆x2
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• Implicit scheme: Time derivative with a backward difference and space derivative
with central difference at the point tn+1, xi.

un+1
i −uni

∆t
= ν

un+1
i+1 − 2un+1

i +un+1
i−1

∆x2
+ O (∆t,∆x2)

→ Rearrangement for the unknowns un+1
i−1 , un+1

i , un+1
i+1

−σ un+1
i−1 + (1 + 2σ)un+1

i − σ un+1
i+1 = uni

=⇒ Coupled tridiagonal equation system

=⇒ Solution with Gaussian elimination

Solution of a tridiagonal equation system

The solution of tridiagonal equation systems, e.g. resulting from an implicit difference
scheme, is performed by Gaussian elimination. The method, especially for tridiagonal
systems is also known as an LU decomposition, Thomas or Richtmeyer algorithm.

The tridiagonal equation system for the unknown ui is:

aiui−1 + biui + ciui+1 = Ri i = 2, . . . , im− 1 (1.1)

The boundary conditions for i = 1 and i = im are of general form of third type, which
includes Dirichlet and gradient boundary conditions.

αu+ β
∂u

∂x
= γ

The discretization of this boundary conditions, e.g. for i = 1 yields αu1 + β u2−u1
∆x

= γ and
thus boundary values for i = 1 and i = im as

u1 = r1u2 + s1 and uim = rimuim−1 + sim

Using a recursion approach equation (1) is reduced to a bidiagonal system (in this case an
upper triangular matrix).

ui = Eiui+1 + Fi (1.2)

The recursion coefficients Ei and Fi are obtained by substituting equation (2) in the orig-
inal equation (1) and eliminating ui−1.

Ei =
−ci

aiEi−1 + bi
and Fi =

Ri − aiFi−1

aiEi−1 + bi
(1.3)

The solution scheme requires at first the calculation of the recursion coefficients for i =
2 · · · im according to equation (3). The starting values E1 and F1 are obtained from the
recursion and the boundary condition for i = 1.

u1 = E1 u2 + F1

u1 = r1 u2 + s1

→ E1 = r1 F1 = s1



35

After the calculation of all recursion coefficients Ei , Fi for i = 2, · · · im, the solution of ui
is determined from equation (2). This requires the boundary value uim which is obtained
from the recursion approach and the boundary condition for i = im.

uim−1 = Eim−1 uim + Fim−1

uim = rim uim−1 + sim
→ uim = −rim Fim−1−sim

rim Eim−1−1

The final solution is calculated with the recursion approach in equation (2):

ui = Ei ui+1 + Fi i = im− 1, im− 2, · · · , 1
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Consistency of difference schemes

The consistency for a difference scheme must be proved as for the single differences.
The difference formulation of a partial differential equation must approach the differential
equation in the limit ∆x, ∆t → 0, since only then the numerical solution can approach
the analytical solution.

A difference scheme is called consistent with a partial differential equation if
for decreasing step sizes ∆x, ∆t → 0 the difference scheme approaches the
partial differential equation, i.e. if the truncation error becomes zero.

For a difference scheme L∆ (u) = 0 of a partial differential equation L (u) = 0
with the exact solution u consistency is granted, if

lim
∆t,∆x→0

∥∥∥L (u) − L∆ (u)
∥∥∥ = lim

∆t,∆x→0

∥∥∥ τ (u)
∥∥∥ = 0

p

Example : Proof of consistency for the explicit scheme of the Fourier equation

PDGl.: L (u) = ∂u
∂t
− ν ∂2u

∂x2
= 0

FDGl.: L∆ (u) =
un+1
i −uni

∆t
− ν

uni+1− 2uni +uni−1

∆x2
= 0

Taylor series expansion :

un+1 = un + ∂u
∂t

∣∣∣n ∆t + ∂2u
∂t2

∣∣∣n ∆t2

2
+ ∂3u

∂t3

∣∣∣n ∆t3

6
+ ∂4u

∂t4

∣∣∣n ∆t4

24
+ · · ·

ui±1 = ui ± ∂u
∂x

∣∣∣
i
∆x + ∂2u

∂x2

∣∣∣
i

∆x2

2
± ∂3u

∂x3

∣∣∣
i

∆x3

6
+ ∂4u

∂x4

∣∣∣
i

∆x4

24
± · · ·

in FDE:

L∆ (u) = ∂u
∂t

+ ∂2u
∂t2

∆t
2

+ O (∆t2) − ν
[
∂2u
∂x2

+ 1
12

∆x2 ∂4u
∂x4

+ O (∆x4)
]

Truncation error :

τ (u) = L (u) − L∆ (u) = − ∂2u
∂t2

∆t
2

+ ν ∆x2

12
· ∂4u
∂x4

+ O (∆t2, ∆x4)

Consistency :
lim

∆t,∆x→0
τ (u) = 0
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1.3.2 Numerical stability

Introduction

Numerical stability, resp. instability is a quality of a difference scheme describing the
correspondence of the difference solution to small disturbances. Such disturbances are
caused by external errors, like e.g. round off errors resulting from the limited numerical
precision of a computer. Whether or not these errors stay limited from time step to time
step the difference schemes are called stable or unstable.

The difference solution of a differential problem can get unstable, in spite of the stability
of the corresponding analytical solution. This originates from the approximation which
in principle exactly solves a differential equation changed by the truncation error. For
the differential problem L(û) = 0 and the difference problem L∆(û) = 0 the modified
differential equation is:

L∆(û) = L(û)− τ = 0

The higher order derivatives in the truncation error influence the solution qualities and the
included step sizes cause a strong dependency of the stability on the step size (see also
stability analysis by Hirt). Therefore, it is important to determine the stability region of a
difference scheme.

A simplified stability criterion can be derived as follows:

The exact difference solution at time t = n∆t of the difference solution L∆U = 0 be Un

and W n be the current solution (with round off errors) of this equation. The maximum
error of the difference | εn | = |W n − Un | between two time steps t = n∆t and
t+ ∆t = (n+ 1) ∆t is proportional to a positive constant k

max | εn+ 1 | = k ·max | εn | k > 0

The maximum error developing after n steps from the initial error ε0 is

max | εn+ 1 | = kn ·max | ε0 |

A scheme is stable, if the error remains limited for n→∞ , i.e.

k ≤ 1

resp.
max | εn+ 1 | ≤ max | εn |

To investigate the stability of a difference scheme a certain error distribution is inserted in
the scheme and checked for the criterion. For a single perturbation the “discrete pertur-
bation theory” is obtained, while for a periodic perturbation the “von Neumann stability
analysis” is obtained.
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Discrete error perturbation theory

The discrete perturbation theory is an empirical method for the investigation of stability.
In this theory a single disturbance ε is defined as initial condition at a grid point. This
perturbation overlays an exact solution U . The current solution then becomes:

W = U + ε

The time and space dependent behavior of the perturbation is obtained from the solution
of the difference equation for subsequent time steps. The scheme becomes unstable, if the
maximum modulus of the perturbation increases.
For linear equations the perturbation ε (error) satisfies the same difference equation as the
solution of U itself, since

L∆ ·W = L∆ · U︸ ︷︷ ︸
0

+L∆ · ε = 0⇒ L∆ · ε = 0

Therefore, for linear equations the course of the perturbation can directly be calculated
from the difference equation. This is demonstrated with an example:

Example: An explicit scheme for Fourier’s equation ut = ν uxx is considered:

εn+1
i = σ εni−1 + (1− 2σ) εni + σ εni+1 mit σ = ν

∆t

∆x2

The analysis of the error behaviour yields the following results:

• Initial condition n = 0

ε0
i = ε für i = is ε0

i = 0 für i 6= is

• Time step n = 1

ε1
is = (1 − 2σ) ε ; ε1

is±1 = σ ε

from max| ε1 |
max| ε0 | ≤ 1 folgt |σ | ≤ 1 bzw. | 1 − 2σ | ≤ 1

→ 0 < σ ≤ 1

• Time step n = 2

ε2
is = (1 − 4σ + 6σ2) ε ; ε2

is±1 = (2σ − 4σ2) ε ; ε2
is±2 = σ2 ε

→ 0 < σ ≤ 2/3

• Time step n (n → ∞)

→ 0 < σ ≤ 1/2 asymptotical stability limit
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The behaviour of the perturbation for a stable solution with σ = 1
2
and for an unstable

solution with σ = 1 is presented in the following tables.

• σ = 1/2 Error max | εni | decreases → the solution remains stable

i∆x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

n∆t n
i 0 1 2 3 is=4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0 0
0.5 1 0 0 0 0 ε 0 0 0 0 0 0
1.0 2 0 0 0 1

2ε 0 1
2ε 0 0 0 0 0

1.5 3 0 0 1
4ε 0 1

2ε 0 1
4ε 0 0 0 0

2.0 4 0 1
8ε 0 3

8ε 0 3
8ε 0 1

8ε 0 0 0
2.5 5 0 0 1

4ε 0 3
8ε 0 1

4ε 0 1
16ε 0 0

3.0 6 0 1
8ε 0 7

16ε 0 7
16ε 0 1

32ε 0 1
32ε 0

c
c
c

• σ = 1 Error max | εni | increases → the solution becomes unstable

i∆x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

n∆t n
i 0 1 2 3 is=4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 ε 0 0 0 0 0 0
2 2 0 0 0 ε −ε ε 0 0 0 0 0
3 3 0 0 ε −2ε 3ε −2ε ε 0 0 0 0
4 4 0 ε −3ε 6ε −7ε 6ε −3ε ε 0 0 0
5 5 0 −4ε 10ε −16ε 19ε −16ε 10ε −4ε ε 0 0
6 6 0 14ε −30ε 45ε −51ε 45ε −30ε 15ε −5ε ε 0

c
c
c

Conclusions:

• For a large amount of time steps the scheme remains stable, if

0 < σ ≤ 1/2 ( conditionally stable scheme )

• A time step limitation follows from the stability condition

∆tmax ≤ 1/2 · ∆x2

ν

• A decrease in the grid step size causes a square decrease of ∆t

∆t ∼ ∆x2

• For realistic applications the perturbation theory is too costly!
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von Neumann stability analysis

J.von Neumann , Los Alamos (1944) in: O’Brien et.al. : Journ. Math.Phys.,29 ,1951

• Instead of a single perturbation, an error function that is periodic in physical space
and has a time dependent amplitude (Fourier series)is considered. Such an approach
alows the analytical stability investigation, one directly obtains the asymptotical
behaviour for n → ∞. The periodical error function is inserted in the difference
equation and the temporal behaviour of the amplitude is calculated. A growing
amplitude for subsequent time steps indicates an unstable scheme, while a shrinking
amplitude indicates a stable scheme.

• The essential limitation is:

The analysis is only valid for linear initial value problems, i.e. the influence of the
boundary conditions is ignored.

• In spite of the limitation the von Neumann analysis is the most commonly used
stability analysis for initial value problems. It also obtains useful results for non
linear problems, if it is applied to the corresponding linearized difference equation
(with fixed coefficients).

Derivation of the method
The derivation is performed for a scalar, linear difference equation in (x, t).

• The error function is formulated as a fourier series, with the function for the amplitude
V and a periodic function in physical space eIkx:

ε (x, t) =
kmax∑
kmin

V (t, k) · eIkx

with the wave number k = 2π
λ

and I =
√
−1

For the dicrete difference problem with x = i∆x and t = n∆t the approach yields

εni =
kmax∑
kmin

V n (k) · eIki∆x =
Θmax∑
Θmin

V n (Θ) · eIΘi

Where Θ = k∆x is the wave angle. The wave number kmin , kmax respectively
the wave angles Θmin , Θmax are obtained from the minimum and maximum re-
solvable wavelength λmin = 2 ∆x and λmax = 2L of the discrete problem (L=
integration length). Therefore, the lower and upper value of the wave angle are
Θmin = 0 und Θmax = π . For this region the stability needs to be investigated:

• This approach is introduced into the difference equation. A general difference scheme
for two time levels is:

l2∑
j=−l1

dj · u (x + j∆x, t + ∆t) =

m2∑
j=−m1

cj · u (x + j∆x, t)



41

An example is the explicit scheme for ut = ν uxx :

un+1
i = σ uni−1 + (1− 2σ)uni + σ uni+1 →

0∑
j=0

dj u
n+1
i+j =

1∑
j=−1

cj u
n
i+j

• For linear equation systems the variable u can be replaced by the error ε. With the
approach for εni for the general scheme one obtains:∑

j

dj ·
∑

Θ

V n+1 (Θ) · eIΘ(i+j) =
∑
j

cj ·
∑

Θ

V n (Θ) · eIΘ(i+j)

After rearrangement of the sums∑
Θ

V n+1 (Θ) ·
∑
j

dj · eIΘ(i+j) =
∑

Θ

V n (Θ) ·
∑
j

cj · eIΘ(i+j)

the equation can be satisfied for each wave angle (i.e.
∑

Θ is gone).
With the above equations the relation between the amplitudes of a wave angle Θ at
the old and the new time level becomes:

V n+1(Θ) =

∑
j

cj · eIΘ(i+j)∑
j

dj · eIΘ(i+j)
· V n(Θ)

The factor of proportionality between the amplitudes V is the amplification factor G .

G ( Θ, ∆t, ∆x, cj, dj ) =

∑
j

cj · eIΘ(i+j)∑
j

dj · eIΘ(i+j)

The stability condition that this factor must satisfy can be found by repetitive (n-
fold) application until the initial amplitude V 0(Θ).

V n(Θ) = [G ( Θ · · · )]n · V 0(Θ)

To keep the error limited for n→∞, the following condition must hold:

|G(Θ) | ≤ 1 for 0 ≤ Θ ≤ π

This inequality is the stability condition for scalar difference schemes.

• For systems the stability analysis can be derived in an analogous fashion. In this case
~V is the vector of amplitudes of the single variables and ¯̄G the amplification matrix.
This leads to:

~V n+1 = ¯̄G ~V n

The matrix norm must satisfy the following condition:

‖ ¯̄Gn‖ ≤ const. für n→∞

For the eigenvalues λG of ¯̄G the stability criterion requires:

|λG | ≤ 1
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Application examples of the von Neumann stability analysis
The von Neumann stability analysis is one of the most important tools in the investiga-
tion of numerical solution schemes for initial value problems. Therefore, its application is
demonstrated with examples, to show how the analysis can be performed in formal steps.

• 1. Example:

The stability of an explicit scheme for Fouriers 2–D (heat conduction) equation

ut = ν (uxx + uyy )

shall be investigated. The explicit difference scheme consists of a forward difference
in time and central differences in x and y direction: un+1

i,j = uni,j + σx (uni−1,j −
2uni,j + uni+1,j ) + σy (uni,j−1 − 2uni,j + uni,j+1 )

mit σx = ν∆t
∆x2

und σy = ν∆t
∆y2

A two dimensional Fourier approach for the variable uni,j is defined as periodic per-
turbation ( = approach for the error εni,j). uni,j = V n · eI(kx·x+ky ·y) = V n ·
eI(kxi∆x+ kyj∆y) = V n · eI(Θxi+ Θyj)

The amplification factor is obtained from V n+1 = G · V n:

G = 1 − 2σx ( 1 − cosΘx ) − 2σy ( 1 − cosΘy )

The stability condition |G | ≤ 1 has to be proven for 0 ≤ Θ ≤ π. Since G is
usually complex it is more convenient to examine the square modulo instead of the
modulo, i.e. |G | 2 = (ReG)2 + (ImG)2 ≤ 1. For the given real expression G one
obtains: |G| 2 = [1 − 2σx ( 1 − cosΘx ) − 2σy ( 1 − cosΘy )]2 ≤ 1

The inequality is satisfied for 0 ≤ Θ ≤ π, if

→ σx + σy ≤ 1
2

The examined scheme is therefore conditionally stable. The time step is limited by:

∆t ≤ 1 / (2 ν( 1
∆x2

+ 1
∆y2

))
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• 2. Example: In the second example the application of the stability analysis on a
system of difference equations will be demonstrated. The initial system of partial
differential equations in the variables u and v is:

ut + a vx = 0
vt + b ux = 0

The system can be written in short as:

~Ut + A ~Ux = 0 mit ~U =

(
u
v

)
und A =

(
0 a
b 0

)
The system can expressed with an explicit scheme, using forward differences in time
and central differences in space for both variables equally. This yields:

~Un+1
i = ~Un

i − A ∆t
2∆x

(~Un
i+1 − ~Un

i−1)

On the vector the one dimensional Fourier approach is applied:

~Un
i = ~V n · eIΘi with ~V n =

(
Vu
Vv

)n
The amplification matrix G is obtained from the rearrangement: ~V n+1 = G ~V n:

G =

(
1 −a∆t

∆x
I sin Θ

−b∆t
∆x
I sin Θ 1

)
The stability condition requires that the moduli of the eigenvalues of G are equal or
less than one, i.e. |λ(G)| ≤ 1.

The eigenvalues λ are obtained from:

|G − λE | = (1− λ)2 + ab ( ∆t
∆x

sin Θ)2 = 0

The square root of this equation yields:

λ1,2 = 1 ± I
√
ab ( ∆t

∆x
sin Θ)2

A closer look at the moduli for 0 ≤ Θ ≤ π shows that at least one eigenvalue exceeds
the value one for a · b > 0.

|λ1,2 | = 1 + ab ( ∆t
∆x

sin Θ)2

Thus this scheme is unstable for a · b > 0.
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• 3. Example:

In this example the stability of a scheme with three time levels is investigated. Such
a scheme is formulated for a hyperbolic transport equation.

ut + a ux = 0

Application of central differences in time and space around t = n∆t yields an explicit
scheme O (∆x2,∆t2) with the time indices n−1 n and n+1 (Dufort-Frankel scheme).

un+1
i −un−1

i

2 ∆t
+ a

uni+1−uni−1

2 ∆x
= 0

resp. un+1
i = un−1

i − C (uni+1 − uni−1 ) with C = a∆t
∆x

Using the common Fourier approach

uni = V n · eIΘi

and the condition that the amplifiaction factor is valid for all time levels, i.e.

G = V n+1

V n
= V n

V n−1

a quadratic, complex equation is obtained for G

G2 + I 2CsinΘ ·G = 1

with the solutions:

G1,2 = −I C sinΘ ±
√

1− (C sinΘ)2

For both solutions the stability condition |G | ≤ 1 for 0 ≤ Θ ≤ π must be
examined. The following cases must be distinguished:

a) (C sinΘ)2 > 1→ C > 1 imaginary solution

→ |G | 2 > 1

unstable scheme for C > 1

b) (C sinΘ)2 ≤ 1→ C ≤ 1 real solution

|G | 2 = (C sinΘ)2 + (1− (C sinΘ)2 )

→ |G | 2 = 1

conditionally stable scheme for C ≤ 1
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Stability analysis by Hirt

C.W.Hirt : Heuristic Stability Theorie for Finite Difference Equations, J. of Comp.Phys., vol 2,
1968.

The instability of difference solutions originates from the finite series expansion which in
principle leads to the solution of a differential equation which is modified by the truncation
error. With the differential problem L(û) = 0 and the difference problem L∆(û) = 0 the
differential equation of the difference approximation becomes: L∆(û) = L(û)−τ = 0
The truncation error includes the higher order derivatives, multiplied by the powers of the
step sizes. This changes the solution properties of the differential equation of the difference
approximation, possibly causing the instability of the solution, although the solution of the
original problem remains stable.

The idea of the stability analysis by Hirt is to examine the properties of the differential
equation of the difference approximation and to compare it to the behaviour and physical
interpretation of known analogous equations (e.g. positive viscosity or characteristics).
Therefore, the stability analysis accoring to Hirt delivers a very descriptive characterization
of the effects of numerical approximations. However, since a comparative solution is often
lacking this method can not always be applied!

The principle of the stability analysis according to Hirt, i.e. the Taylor series expansion of
a given difference scheme into a differential equation of fixed ∆x,∆t · · · and its interpre-
tation is demonstrated for two examples.

• 1. Example

An explicit scheme with forward differences in time and backward differences in space
(“upwind” scheme, if a > 0) is considered for the hyperbolic transport equation (model
equation for inviscid flows):

ut + a ux = 0 a = const.

which yields: un+1
i −uni

∆t
+ a

uni −uni−1

∆x
= 0

Using a taylor series expansion for u around the point (xi, tn) and substitution of
the second order time derivative utt with the differential equaton, i.e. :

utt = − a uxt = − a (ut)x = a2 uxx

one obtains the differential equation of the difference approximation:

ut + a ux =
(
a∆x

2
− a2 ∆t

2

)
· uxx + O(∆x2,∆t2)

The originally hyperbolic equation becomes a parabolic equation for fixed step sizes!
This equation has the same structure as the convection diffusion equation (model
equation for the Navier-Stokes equation): ut + a ux = ν · uxx
The solution of this equation is for positive viscosity ν always damped, i.e. the
perturbations diminish over time.

In analogy the factor preceeding the second order derivation of the differential equa-
tion of the difference approximation is refered to as the numerical viscosity νnum.

νnum = a∆x
2
− a2 ∆t

2
= a∆x

2
· (1− C) with C = a∆t

∆x
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From this analogy follows a damped solution for positive numerical viscosity, i.e.
stable solution and for the opposite case an excitated flow, i.e. an unstable solution.

From this requirement it follows for stability

a > 0: νnum > 0 for C = a∆t
∆x
≤ 1 → conditionally stable

a < 0: νnum < 0 for all C → unstable

These conditions also follow from the von Neumann stability analysis.

The numerical viscosity is of major importance for the numerical solution of hyper-
bolic partial differential equations, like e.g. the Euler equations. On the one hand it
is necessary for the numerical stability for the damping of small perturbations (round
off errors), on the other hand it imposes quasi viscous effects, like a “smeared out”
solution. Therefore, it is one main goal to minimize these effects.

• 2. Example

For the parabolic diffusion equation

ut = ν uxx

an explicit scheme is considered:
un+1
i −uni

∆t
= ν

∆x2
(uni+1 − 2uni + uni−1)

Taylor series expansion leads to the differential equation of the difference approxima-
tion:

ut − ν uxx = − ∆t
2
utt + O (∆x2,∆t2)

The rearranged equation yields:

uxx − ∆t
2 ν
utt = 1

ν
ut + O (∆x2,∆t2)

The originally parabolic problem therefore numerically becomes a hyperbolic problem
for ∆t 6= 0 (see also wave equation utt − a2

0 uxx = 0).

As an analogous equation for comparison the solution of a hyperbolic problem of a
wave equation can be considered. The influential domain of this equation is fixed by
the characteristics
dt
dx
|1,2 = ±

√
∆t
2 ν
.

It is necessary for the numerical solution of hyperbolic equations that the numerical
domain of influence is equal or greater than the influential region of the characteristics,
i.e.: ∆x

∆t
≥ dx

dt
|C

With ∆t
∆x
≤
√

∆t
2 ν

this delivers a stability definition for the explicit scheme:

σ = ν ∆t
∆x2
≤ 1

2

This relation for the conditionally stable scheme is also obtained by other analysis.
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1.3.3 Convergence

The aim of numerical calculations is to approach the exact solution of a partial differential
equation as far as possible, where the numerical solution approximates the analytical solu-
tion with higher accuracy for refined grids. This is known as convergence of the solution.
The proof of convergence for a scheme cannot be performed in the most general form.
However, for linear initial value problems it is possible to show that the satisfaction of
consistency and stability of a difference scheme is a sufficient condition for convergence of
a numerical solution. The linear initial value problem

L (û) = 0

with the exact solution û and the initial condition

B (û) = 0

be considered. The difference approximation of this problem with the exact difference
solution U be

L∆ (U) = 0 und B∆ (U) = 0

The currently computed solution W = U + ε with the round off error ε also satisfies the
difference approximation.

L∆ (W ) = 0 und B∆ (W ) = 0

With the definition of the convergence error e = û−U and the round off error ε on obtains
for the computed solution W :

W = U + ε = û+ U − û+ ε = û− e+ ε

The convergence of the problem can now be defined as follows: A difference solution con-

verges if for every point P (~x, t ) the difference solution approaches the exact differential
solution, for step sizes ∆x, ∆t approaching zero. This yields that e and ε must diminish
in this case.

The numerical stability describes the behaviour of the round off errors ε. A difference
solution is table, if

max | εn+ 1 | = kn ·max | ε0 |

This means that for a stable scheme (k ≤ 1) the computed solution W approaches the
exact difference solution U ( apart from a small initial error ε0 at k = 1). Therefore, it is

W = U = û− e



48

Consistency requires that the truncation error with the step sizes ∆x, ∆t→ 0 diminishes.
For linear equations a relation between consistency and truncation error can be established:

L (û) − L∆ (U) = L (û) − L∆ (û) + L∆ (û) − L∆ (U) = τ (û) + L∆ (e) = 0

This also holds for the discrete initial condition.

τB (û) + B∆ e = 0

For a consitent approximation with τ → 0 , τB → 0 for ∆x, ∆t → 0 and a well posed
initial value problem follows:

L(e) = 0 und B(e) = 0

The solution of this problem leads to

e = û− U = 0

This results in convergence.

The proof has been given by P. Lax in a general form, known as “Lax equivalence theorem”.

Lax equivalence theorem

P.D.Lax, R.D.Richtmeyer: Comm. on Pure and Appl. Math., vol 9, 1956

For a consistent difference approximation of a
well posed linear initial value problem

the numerical stability is necessary and sufficient condition
for the convergence of the solution.

For linear initial value problems the Laxian theorem offers the possibility to replace the
proof of convergence by the more straightforward proof of stability and consistency. For
non linear initial and boundary value problems the general proof of convergence is missing.
Therefore, the proof of conergence according to Lax is often applied to a linearized form
of a non linear problem, to enable a prognosis on the usability of a scheme. The Laxian
equivalence theorem for the proof of convergence is therefore one of the most important
tools for the development of difference schemes.
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1.4 Solution methods for elliptic partial differential equa-
tions

1.4.1 Introduction

An important class of equations in fluid mechanics is of elliptic type, see also section 1.1
and 1.2 of this script. Equations of this type especially describe steady flows, inviscid
(subsonic) as well as viscous flows. Examples are the potential equations, the Poisson
equation for the stream function or the pressure, but also equation systems such as the
Navier-Stokes equations for steady flow. Typical PDEs of elliptic type, occurring in fluid
dynamics, are of the following form

∂2 u

∂ x2
+
∂2 u

∂ y2
+ f (

∂ u

∂x
,
∂ u

∂y
, u , x , y) = 0

or they constitute equation systems, like the Cauchy-Riemann differential equations:
∂ u

∂x
+
∂ v

∂y
= 0 ;

∂ v

∂x
− ∂ u

∂y
= 0

The previously discussed basics of the numerical analysis of partial differential equations,
such as the stability analysis and proof of convergence, assumed the PDE to describe an
initial value problems. Initial value problems result from a bounded domain of influence
because of the real slopes of characteristic lines of parabolic and hyperbolic differential
equations. The characteristic lines define the direction of information transport in which
the solution develops, e.g. in physical time direction. In contrast to this solution behavior
elliptic partial differential equations lead to boundary value problems. For these problems
the information in the solution field is transported simultaneously and from all directions.
Therefore, boundary values influence values in the flow. This different behavior of infor-
mation transport for initial value and boundary value problems requires different solution
schemes. Because of this initial value problems are also referred to as marching direction
schemes, while elliptic boundary value problems are known as field schemes.

Corresponding to the information transport the numerical solution of elliptic boundary
value problems requires the direct, simultaneous solution for all grid points of the discretized
domain of integration. This can be performed by direct inversion methods, like e.g. the
Gaussian elimination algorithm. This algorithm is often most suitable for equation systems
of moderate size. For larger systems, like those occurring in the numerical solution of flow
problems with high grid point numbers, the memory and computing power requirement
of direct methods increases over proportionally. Therefore, such problems are often solved
applying iteration methods. These methods directly invert a (easier to invert) part of
the solution matrix, while the other part is applied to an approximated solution vector.
Starting from an initial solution the solution is performed stepwise until a convergent
solution is reached which is numerically defined by an convergence criterion. The memory
and computing time requirement per iteration step is essentially smaller than for direct
methods. But the overall computational cost until convergence is reached also depends on
the number of iterations and thus on the convergence properties of the applied iteration
scheme. Therefore, this chapter introduces and discusses some of the most important
iteration schemes which are demonstrated for the numerical solution of Poisson’s equation.
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1.4.2 Discretization of Poisson’s equation

For the discussion of iteration schemes for boundary value problems the numerical solution
of Poisson’s equation is considered. Equations of this type occur in the estimation of the
stream function and the pressure for incompressible flows. But their solution also includes
Laplace’s equation for a diminishing right hand side which describes the potential flow.

Definition of the boundary value problem
The solution in a rectangular domain of

integration D shall be described by Pois-
son’s equation in Cartesian coordinates
(x, y).

∂2 u
∂ x2 + ∂2 u

∂ y2 = −f (x , y)

Dirichlet boundary conditions are pre-
defined on the boundary of the domain.

u = g(x, y)
im+1

m+1j

∆ x

∆ y

0
0

x

y i

jj

i

a

b

The discretization of the boundary value problem is performed in a domain with the edge
lengths a and b subdivided in (im+ 1) respectively (jm+ 1) intervals of constant step size:

∆x =
a

im+ 1
∆y =

b

jm+ 1

The second order derivatives of the equation are approximated by central differences of
order O(∆x2) and O(∆y2) respectively. The discretized Poisson’s equation at a point (i, j)

with 1 ≤ i ≤ im and 1 ≤ j ≤ jm therefore becomes:

ui,j − Θx (ui−1,j + ui+1,j) − Θy (ui,j−1 + ui,j+1) = δ2 fi,j

The following abbreviations have been defined in the above equation:

Θx =
∆y2

2(∆x2 + ∆y2)
Θy =

∆x2

2(∆x2 + ∆y2)
δ2 =

∆x2∆y2

2(∆x2 + ∆y2)

Together with the boundary conditions a coupled system of im · jm algebraic equations is
obtained for which the solution for the discrete points (i, j) must be found.
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Matrix - vector presentation

For the discussion of the solution method it is convenient to formulate the system of differ-
ence equations in a compact matrix vector notation. To achieve this at first the difference
equations for a row j = const. is considered.

i = 1 u1,j −Θx ( + u2,j ) −Θy (u1,j−1 + u1,j+1) = δ2 f1,j + Θx · u0,j
...
i ui,j −Θx (ui−1,j +ui+1,j ) −Θy (ui,j−1 + ui,j+1) = δ2 fi,j
...

i = im uim,j −Θx (uim−1,j+ ) −Θy (uim,j−1+uim,j+1) = δ2 fim,j + Θx · uim+1,j

The given quantities, fi,j and the boundary values u0,j , uim+1,j are written to the right
hand side. The complete row j = const. with the equations for 1 ≤ i ≤ im can be written
in compact form in a single equation with:

• (im) - dimensional vectors

−→
U j =


u1,j

u2,j
...

uim,j

 −→
f j =


f1,j

f2,j
...

fim,j

 −→w j =


u0,j

0
...
0

uim+1,j


• quadratic matrices of order (im)

Ei =


1
·

·
1

 Li =


0
1 0
· ·

· 0
1 0

 LTi =


0 1

0 ·
· ·

0 1
0


Therefore, the system reduces to a column vector with jm elements

j = 1 [Ei − Θx (Li + LTi )]
−→
U 1 −Θy ( +

−→
U 2 ) = δ2 (

−→
f 1 + 1

∆x2
−→w 1 + 1

∆y2
−→
U 0)

...
j [Ei − Θx (Li + LTi )]

−→
U j −Θy (

−→
U j−1 +

−→
U j+1 ) = δ2 (

−→
f j + 1

∆x2
−→w j)

...
j = jm [Ei − Θx (Li + LTi )]

−→
U jm −Θy (

−→
U jm−1+ ) = δ2 (

−→
f jm + 1

∆x2
−→w jm + 1

∆y2
−→
U jm+1)

The structure of this equations allows a further summation for the complete solution vector
U which includes the (im)-dimensional vectors ~Uj as components.

• compact vectors with (im) - dimensional components

U =


−→
U 1−→
U 2
...
−→
U jm

 F =


−→
f 1 + 1

∆x2
−→w 1 + 1

∆y2
−→
U 0

−→
f 2 + 1

∆x2
−→w 2 + 0

... +
−→
f jm + 1

∆x2
−→w jm + 1

∆y2
−→
U jm+1
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• quadratic matrices of order (im · jm)

E =


Ei
·

·
Ei

 L =


Li
·

·
Li

 B =


0
Ei 0

· ·
Ei 0

Ei 0


The transposed matrix of B is BT . The matrix LT corresponds to the Matrix L, but with
the elements LTi .
With this the complete system of im · jm equations can be written as:

A ·U = δ2 F

In this equation U stands for the solution vector, F represents the vector of known quan-
tities and A is the solution matrix with the components

A = E −Θx (L+ LT )−Θy(B +BT )

1.4.3 Principles of iteration schemes

Direct methods invert the complete solution matrix of the difference equation system with-
out iteration. The solution vector is obtained from:

U = A−1 δ2 F

The fundamental algorithm in this method is the Gaussian elimination applied in different
variants. For large systems (im·jm� 1) the requirements for computing time and memory
become very high. Additionally, the danger of accumulated round off errors occurs.
Iteration schemes which only perform an inversion of a simplified matrix are more efficient
for the solution of large systems. Stable iteration schemes are invulnerable against round
off errors as a consequence of the decoupling of the single iteration steps.
To develop an iteration scheme the solution matrix A is split into the components

A = N − P

The sub matrix N has a simplified structure and can be solved directly, while the matrix
P is applied to an approximated solution vector. For the system of difference equations
A ·U = δ2 F one obtains the recursion, where ν is the iteration counter.

N U ν = P U ν−1 + δ2 F

The correction form of this recursion is build with the difference of the solution vectors
∆U ν = U ν −U ν−1.

N ∆U ν = δ2 F − AU ν−1 = −Res(U ν−1)

The equation system Res(U ν−1) = AU ν−1 − δ2 F is known as the residual.
The recursion creates a sequence of solution vectors U ν starting from an initial vector U (0).
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It is the aim of the iteration to come arbitrarily close to the exact solution, i.e. to reach
the convergence of the iteration scheme. In realistic computations a convergence limit is
defined for which the iteration is aborted. This limit depends for example on the desired
precision. The convergence limit can be fixed in various ways, e.g.:

max|U ν −U ν−1 | ≤ ε1max |U ν−1|
max|Res(U ν) | ≤ ε2max |Res(U (0)) |

1.4.4 Stability and Consistency of iteration schemes

The typical course of an iteration, i.e. the step wise solution beginning with an initial
solution, corresponds to the solution of an initial value problem. If the iteration steps are
considered as “time steps”, iteration scheme can be viewed as initial value problem. There-
fore, the formerly discussed consistency and stability investigations can be transferred to
an iteration scheme.
The iterative behavior will be presented starting from the iteration rule.

N U ν = P U ν−1 + δ2 F

An artificial time is defined τ = ν · ∆τ , where ν is the iteration counter. The solution
vector U ν is developed by Taylor series expansion for ν − 1:

U ν = U ν−1 + ∆τ
∂U

∂τ

∣∣∣ν−1

+ · · ·

The quasi time dependent form of the iteration scheme is obtained when the series expansion
is inserted in the iteration rule:

N ∆τ
∂U

∂τ
= δ2 F− (N − P )U = −(AU− δ2 F)

The right hand side of the equation represents the discrete Poisson’s equation which must
be equal zero for the converged (“steady”) state (A ·U = δ2 F ).

The investigation of the consistency can be split into the examination of the discrete bound-
ary value problem and the investigation of the iteration scheme. The boundary value prob-
lem, i.e. the discretized Poisson’s equation at the point (i, j) yields after rearrangement
and insertion of the Taylor series in x and y-direction

uxx + uyy + f +
∆x2

12
uxxxx +

∆y2

12
uyyyy + · · · = 0

It follows from the equation that the discretization of Poisson’s equation is accurate up
to order O (∆x2,∆y2) and consistent for diminishing step size ∆x , ∆y. The consistency
investigation of the iteration scheme must proof that the converged solution is independent
of the iteration scheme. This is the case for the quasi time dependent form of the iteration
scheme. The left hand side (N ∆τ ∂U

∂τ
) diminishes for ∆τ → 0 which is equal to ν → ∞

for a fixed arbitrarily chosen τ . The stability investigation of an iteration scheme can be
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performed with analysis for initial value problems. For the examination with the von
Neumann stability analysis the variable uνi,j is replaced in the iteration scheme by Fourier
component

uνi,j = V ν · eI(kxx+kyy)

In the above equation the amplitude V ν stands for the behavior of the perturbation for
subsequent time steps. Stability is obtained, when the amplitude doesn’t increase, i.e. for

|G| ≤ 1

An example will be postponed to a later section. The convergence of an iteration scheme

towards an exact difference solution of the boundary problem can also be estimated by
application of the Laxian equivalence theorem. Another quantitative convergence analysis,
allowing the comparison of different iteration schemes for Poisson’s equation, will be given
in a later section.

1.4.5 Presentation of important iteration schemes

Numerous iteration schemes exist for the solution of elliptic equations. They can roughly
be divided in so called classic and modern, enhanced schemes.
Classic iteration schemes are e.g.

• Jacobi–iteration

• Gauss-Seidel–point iteration

• Over-relaxed Gauss-Seidel–point iteration

• Gauss-Seidel–line iteration

• Over-relaxed Gauss-Seidel–line iteration

• Alternating line iteration

Modern iteration schemes or concepts are e.g.

• Approximated factorization methods

• Fourier solution methods

• Conjugate gradients

• Multi grid methods
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The following section the so called classic methods will be discussed. These are still
heavily applied in todays application and often build the foundation for the understanding
of enhanced methods.

Jacobi iteration method

The Jacobi method is the most simple iteration scheme. It has a bad rate of convergence.
(The rate of convergence, to be defined later, is a measure for the required amount of
iteration steps to reduce the initial error to a given limit.) The Jacobi method is often used
as a method for comparison, because of its simple structure. Starting from the iteration
rule

N U ν = P U ν−1 + δ2 F

the most straightforward matrix, the unity matrix E is defined as inversion matrix N for
the Jacobi method.

N = E and P = N − A = Θx (L + LT ) + Θy (B + BT )

Therefore, the matrix formulation of the Jacobi iteration is:

EU ν = [ Θx (L + LT ) + Θy (B + BT ) ]U ν−1 + δ2 F

The formulation shows that in the Jacobi iteration the new value U ν is calculated from
the neighboring old values U ν−1.

The point wise formulation of the Jacobi method yields an algorithm for the numerical
solution steps for 1 ≤ i ≤ im ; 1 ≤ j ≤ jm

u νi,j = Θx (u ν−1
i−1,j + u ν−1

i+1,j) + Θy (u ν−1
i,j−1 + u ν−1

i,j+1) + δ2 fi,j

The correction form of the Jacobi method is:

∆u νi,j = −Res(uν−1
i,j )

uνi,j = uν−1
i,j + ∆uνi,j

with the residual Res(uν−1
i,j ) of Poisson’s equation

Res(uν−1
i,j ) = uν−1

i,j − Θx (uν−1
i−1,j + uν−1

i+1,j) − Θy (uν−1
i,j−1 + uν−1

i,j+1) − δ2 fi,j

For the stability investigation with the von Neumann analysis the Fourier Ansatz

uνi,j = V ν eIkxx · eIkyy = V ν eIαi · eIβj

is introduced to the point wise iteration rule. After rearrangement the amplification factor
G is obtained:

G = Θx (e−Iα + eIα) + Θy (e−Iβ + eIβ) = 2Θx · cosα + 2Θy · cos β

An estimation of the modulo for 0 ≤ α ≤ π ; 0 ≤ β ≤ π yields

|G| ≤ 1

Therefore, the Jacobi method is unconditionally stable.
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Gauss Seidel point iteration method

The Gauss Seidel point iteration method also belongs to the more simple iteration schemes.
But its convergence rate is two times better compared to the Jacobi method. The method
uses the updated values from the neighboring points, as soon as they are available. Because
of this the method becomes direction dependent, i.e. it depends on the order of the single
steps. If the grid points are updated starting e.g. from i = 1 until i = im and from j = 1
to j = jm the values for the point (i, j) are to the left, (i− 1, j), and below, (i, j− 1), they
are already on the new iteration level ν. With this the iteration matrices N and P become

N = E − Θx L − Θy B

P = N − A = Θx L
T + Θy B

T

The matrix formulation of the Gauss Seidel point iteration scheme is therefore:

(E − Θx L − Θy B )U ν = ( Θx L
T + Θy B

T )U ν−1 + δ2 F

The point wise formulation of the Gauss Seidel method yields the algorithm for the numer-
ical solution steps for i = 1, · · · , im ; j = 1, · · · , jm

u νi,j = Θx (u νi−1,j + u ν−1
i+1,j) + Θy (u νi,j−1 + u ν−1

i,j+1) + δ2 fi,j

The correction form of the method is:

∆u νi,j = −Res(uν−1
i,j ) + Θx ∆u νi−1,j + Θy ∆u νi,j−1

uνi,j = uν−1
i,j + ∆uνi,j

with the residual Res(uν−1
i,j ) of Poisson’s equation

Res(uν−1
i,j ) = uν−1

i,j − Θx (uν−1
i−1,j + uν−1

i+1,j) − Θy (uν−1
i,j−1 + uν−1

i,j+1) − δ2 fi,j

The stability investigation for the Gauss Seidel iteration method yields unconditional sta-
bility.

Accelerated Gauss Seidel point iteration method

Accelerated iteration methods, also referred
to as over relaxed or interpolated methods
in the literature, usually display much better
convergence rates that the original method.
The principle is to use the new value calcu-
lated with the iteration rule as intermediate
value, called Ũ in this case. From this in-
termediate value Ũ and the old value U ν−1

a new value U ν is determined by linear ex-
trapolation. How far this interpolation is
performed depends on the acceleration - or
relaxation factor ω.

ν−1
U U

^
U

ν

U

ν

Uω∆

U∆
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The new value U ν determined from the extrapolation is:

U ν = U ν−1 + ω (Ũ−U ν−1)

The application of the accelerated Gauss Seidel point iteration is performed in two steps:
1. Step: Gauss Seidel point iteration for the intermediate value

E Ũ− ( Θx L + Θy B )U ν = ( Θx L
T + Θy B

T )U ν−1 + δ2 F

2. Step: over-relaxation (extrapolation)

EU ν = EU ν−1 + ω E (Ũ−U ν−1)

Both steps can be summed up by eliminating Ũ.

[E − ω (Θx L + Θy B )] U ν = [(1− ω)E + ω (Θx L
T + Θy B

T )] U ν−1 + ω δ2 F

The point wise formulation of the Gauss Seidel method yields the algorithm for the numer-
ical solution steps for i = 1, · · · , im ; j = 1, · · · , jm

ũi,j = Θx (uνi−1,j + uν−1
i+1,j) + Θy (uνi,j−1 + uν−1

i,j+1) + δ2 fi,j

uνi,j = uν−1
i,j + ω (ũi,j − uν−1

i,j )

Both steps can be combined as:

uνi,j = (1− ω)uν−1
i,j + ω [Θx (uνi−1,j + uν−1

i+1,j) + Θy (uνi,j−1 + uν−1
i,j+1) + δ2 fi,j]

The combined correction form of the method is:

∆u νi,j = −ω (Res(uν−1
i,j ) − Θx ∆u νi−1,j − Θy ∆u νi,j−1)

uνi,j = uν−1
i,j + ∆uνi,j

with the residual Res(uν−1
i,j ) of Poisson’s equation

Res(uν−1
i,j ) = uν−1

i,j − Θx (uν−1
i−1,j + uν−1

i+1,j) − Θy (uν−1
i,j−1 + uν−1

i,j+1) − δ2 fi,j

The stability analysis of the accelerated Gauss Seidel iteration method shows the stability
for different values of the relaxation factor 0 ≤ ω ≤ 2. Values ω < 1 mean under relax-
ation (sometimes necessary for non linear problems), ω = 1 corresponds to the point wise
relaxation while ω > 1 stands for over relaxation.
The number of iterations to reach a given
convergence limit ε depending ω, is presented
in the figure. The best rate of convergence
for Poisson’s equation is obtained for a value
ωopt, ranging between 1 and 2. =constε

optω

ν

0 1 2 ω
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The optimum value ωopt essentially depends on the step sizes. A convergence analysis deliv-
ers the optimum value for the discrete Poisson equation with Dirichlet boundary conditions

ωopt = 2
(

1− π · δ ·
√

2(1/a2 + 1/b2 )
)

= 2

(
1− π ·

√
2 (Θx/(im+ 1)2 + Θy/(jm+ 1)2 )

)
But for different boundary conditions and coefficients of the differential equation this value
might change. In this case the value of ωopt can be obtained by numeric tests. Since the
convergence of the method highly depends on ω,the value should be close to the optimum
relaxation factor ωopt for effective calculations!

Accelerated Gauss Seidel line iteration method

The rate of convergence rises, the more entries of the solution matrix A are considered in
the iteration matrix N . Line iteration methods change the variables on the grid points of
a line x = const. or y = const. simultaneously and therefore relates them to the iteration
matrix N . This yields a coupled, tri diagonal equation system which is solved by Gaussian
elemi nation. The line iteration can be transferred to the principle of the Jacobi, Gauss
Seidel and the accelerated Gauss Seidel iteration.

In the following the accelerated Gauss Seidel line iteration shall be explained as an example
for line iteration methods. In this example the coupling on a line shall be performed in
x-direction, i.e. for 1 ≤ i ≤ im with j = const.. The update of the lines runs from j = 1
to j = jm. In the first step an intermediate value is determined by the Gauss Seidel line
iteration method. In the second step the final value U ν is calculated with over relaxation.
1. Step: Gauss Seidel line iteration for the intermediate value

[E − Θx (L + LT )] Ũ = Θy (BU ν + BT U ν−1) + δ2 F

2. Step: Over relaxation (extrapolation)

U ν = U ν−1 + ω (Ũ−U ν−1)

The point wise formulation of the Gauss Seidel line iteration method yields the algorithm
for the numeric solution steps for i = 1, · · · , im ; j = 1, · · · , jm.

−Θx ũi−1,j + ũi,j − Θx ũi+1,j = Θy (uνi,j−1 + uν−1
i,j+1) + δ2 fi,j

u νi,j = u ν−1
i,j + ω (ũi,j − uν−1

i,j )

The following algorithm is obtained for the correction form :

−Θx ∆uνi−1,j + ∆uνi,j − Θx ∆uνi+1,j = −ω (Res(uν−1
i,j ) − Θy ∆u νi,j−1)

uνi,j = uν−1
i,j + ∆uνi,j

The Gauss Seidel line iteration method, formulated for the variables of the correction form,
leads to the solution of a tri diagonal equation system. This equation system can be solved
by Gaussian elimination.
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The Gauss Seidel line iteration is stable for the relaxation factor 0 ≤ ω ≤ 2. The optimum
value for the relaxation factor of Poisson’s equation with Dirichlet boundary conditions is

ωopt = 2
(

1 − ∆y · π ·
√

1/a2 + 1/b2
)

for line x-direction

ωopt = 2
(

1 − ∆x · π ·
√

1/a2 + 1/b2
)

for line in y-direction

For a better convergence it is beneficial to chose the coupled line in the direction of smaller
step sizes.

Line iteration with alternating directions

Line iteration schemes with a line of coupled points transport the information in the direc-
tion of the line directly. In the other direction the information transport is only performed
step wise from line to line. This slows down the convergence. Therefore, it is more efficient
to alternate the direction of the coupling. This leads to the line iteration schemes with
alternating directions. This principle can again be transferred and applied to the Jacobi as
well as the Gauss Seidel iteration. One of the first of such schemes was published in:

Peaceman , Rachford: SIAM – Journal, 3, 1955.
This method (Alternating Direction Implicit Method (ADI)) is based on the Jacobi line
iteration and over relaxation with alternating lines in x and y-direction. In the following
the algorithm is presented as an example.

1. Line iteration in x- direction

[E − Θx (L + LT )] · Ũ ν−1/2 = Θy (B + BT ) ·U ν−1 + δ2 F

U ν−1/2 = U ν−1 + ω (Ũ ν−1/2 − U ν−1)

2. Line iteration in y- direction

[E − Θy (B + BT )] · Ũ ν = Θx (L + LT ) ·U ν−1/2 + δ2 F

U ν = U ν−1/2 + ω (Ũ ν − U ν−1/2)

The point wise formulation yields the following system:

1. Line iteration in x- direction

−Θxũ
ν−1/2
i−1,j + ũ

ν−1/2
i,j − Θxũ

ν−1/2
i+1,j = Θy (u ν−1

i,j−1 + u ν−1
i,j+1) + δ2 fi,j

u
ν−1/2
i,j = u ν−1

i,j + ω (ũ
ν−1/2
i,j − u ν−1

i,j )

2. Line iteration in y- direction

−Θyũ
ν
i,j−1 + ũ νi,j − Θyũ

ν
i,j+1 = Θx (u

ν−1/2
i−1,j + u

ν−1/2
i+1,j ) + δ2 fi,j

u νi,j = u
ν−1/2
i,j + ω (ũ νi,j − u

ν−1/2
i,j )

This method is stable for all relaxation parameters ω. To improve the rate of convergence
an optimized relaxation parameter is used for each direction.
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1.4.6 Convergence of iteration schemes

In the convergence investigation of initial value problems (see chapter 3 of this course)
it is demanded that the numerical solution approaches the exact solution of the differen-
tial equation for diminishing step sizes. In principle this also applies for boundary value
problems, like the above considered Poisson equation. If the discretized Poisson equation
is solved with a direct method and the system has a unique solution, the consistency of
the spatial discretization (truncation error becomes zero) suffices for convergence. This
means the exact difference solution approaches the exact Poisson equation for decreasing
step sizes ∆x and ∆y. For the investigated solution of Poisson’s equation the convergence
of the exact difference solution is given and will be assumed as known in the following.

For the convergence of an iteration scheme with step wise solution of an approximated
matrix, it must be ensured that the iterative solution approaches the exact solution of
the difference problem for iterating numbers ν → ∞. This problem is discussed in the
following.

A qualitative method for the proof of convergence of an iteration method is given by
the Laxian theorem. If an iteration scheme is considered as artificial initial value prob-
lem, stability and consistency are sufficient for convergence. This statement doesn’t suffice
to evaluate iteration schemes. Therefore, a proof of convergence by investigation of the
discrete eigenvalue problem of the iteration matrix is presented in this section. This al-
lows the calculation of the rate of convergence with which the methods can be compared
quantitatively.

Definitions

The exact difference solution of the discretized Poisson equation is obtained by direct
inversion of A.

U = A−1 δ2 F

If the solution is performed with an iteration scheme,

N U ν = P U ν−1 + δ2 F with A = N − P

an approximate solution is obtained for each iteration step ν

U ν = N−1 (P U ν−1 + δ2 F)

Convergence of an iteration scheme is obtained, if the solution of the iteration problem
approaches the exact solution of the difference problem, i.e.

lim
ν→∞

(Uν − U) = 0

Defining the convergence error with

eν = Uν − U

and insertion in the iteration rule, yields

e ν = N−1 (P e ν−1) = M e ν−1 with M = N−1 P
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for the error. Step wise insertion up to a given initial error e 0 yields

e ν = (M) ν e 0

It is sufficient for convergence, if the convergence error for ν →∞ disappears, ie.e. if

lim
ν→∞

(M)ν = 0

A matrix M satisfying this condition is called convergent.
The modulo of all eigenvalues λi of a convergent matrix is smaller than one. This condition
is often expressed by the spectral radius %(M), i.e.

%(M) ≡ max
i
|λi| < 1

This yields for an arbitrarily chosen norm|| · || für M

||M || < 1

An estimation of the iteration equation of the convergence error by a norm leads to the
inequality

||e ν || ≤ ||(M)|| ν ||e 0||
If the norm of M is replaced by the spectral radius, one obtains the important relation
between the convergence error and the spectral radius.

||e ν || ≤ [%(M)] ν ||e 0||

If for an iterative calculation it is demanded that the amplitude of the is reduced at min-
imum by a factor 10−m, i.e. ||e ν ||/||e 0|| = [%(M)] ν ≤ 10−m, the minimum number of
required iteration steps is obtained from the inequality.

ν ≥ m

− log %(M)
=

m

R

The rate of convergence R = − log %(M) is an important measure for the efficiency of a
iteration method. The larger the convergence rate R, the better the iteration scheme, i.e.
the fewer iterations are necessary to reduce the initial error to 10−m.

Solution of the discrete eigenvalue problem

The eigenvalues of the matrix M are determined from the solution of the
homogeneous eigenvalue problem of the matrix M :

MW = λEW with W = 0 on the boundaries

W is the solution for the eigenvalue λ and corresponds to the non trivial solution of the
boundary value problem.
The solution of the eigenvalue problem will be presented for the example of the solution matrix A.
If one defines M = A, the following eigenvalue problem is obtained:

AW = λAEW with W = 0 on the boundaries
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The difference equation at a point (i, j), where 1 ≤ i ≤ im , 1 ≤ j ≤ jm is

wi,j − Θx (wi−1,j + wi+1,j) − Θy (wi,j−1 + wi,j+1) = λAwi,j

The linear difference equation can be satisfied by a seperation Ansatz.
(Splitting in a x and y dependent component)

wi,j = ϕi · ψj = (a eIα i + b e−Iα i ) · (c eIβ j + d e−Iβ j )

The coefficients a and b are determined from the boundary condition (w = 0).
One obtains for

ϕi = a eIα i + b e−Iα i = (a+ b) cosα i+ I (a− b) sinα i

• i = 0 : ϕi = 0→ 0 = a+ b

• i = im+ 1 : ϕim+1 = 0→ 0 = (a− b) I sin [α(im+ 1)]

→ is satisfied for α (im+ 1) = p π with p = (0), 1, 2, · · · , im, (im+ 1)

The boundary conditions for ψj are satisfied in an analogous way which yields the solution
wi,j:

wi,j = ϕi · ψj = 2a sin (αi) · 2c sin (βj) = a (eIαi − e−Iαi) · c (eIβj − e−Iβj)

with α = p π
im+1

p = 1, 2, · · · , im and β = q π
jm+1

q = 1, 2, · · · , jm

This solution wi,j is inserted in the difference equation of the eigenvalue problem.

The eigenvalues of the solution matrix A after rearrangement of the equation yield

λAp,q = 4 Θx sin2 (
π · p

2(im+ 1)
) + 4 Θy sin2 (

π · q
2(jm+ 1)

) p = 1, 2 · · · , im q = 1, 2, · · · , jm

Where 2Θx+ 2Θy = 1 and sin2 (α/2) = 1
2

(1− cosα) have been applied in the equation.

Convergence of the Jacobi iteration

The calculation of the rate of convergence R is exemplary presented for the Jacobi iteration.

The Jacobi method is defined by

N = E and P = N − A = Θx (L + LT ) + Θy (B + BT )

The maximum eigenvalue of M = N−1 P is required for the calculation of the rate of
convergence. If the eigenvalue problem MW = λEW is multiplied by N = E and if P
is replaced by P = E − A, one obtains

AW = (1− λJ)W
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The eigenvalue problem for the complete solution matrix A is

AW = λAW

A comparison directly yields

λJ = 1− λA

Since the eigenvalues for A have already been calculated, one obtains for the Jacobi iteration

λJ = 1− 4 Θx sin2 (
π · p

2(im+ 1)
)− 4 Θy sin2 (

π · q
2(jm+ 1)

) p = 1, · · · , im q = 1, · · · , jm

The maximum eigenvalue is obtained for p = q = 1 . This yields the following spectral
radius %(MJ) of the Jacobi iteration:

%(MJ) = 1 − Θx
π2

(im+ 1)2
− Θy

π2

(jm+ 1)2

In this equation the sine has been expanded for small arguments (im � 1 , jm � 1)
(sinx ≈ x).

The rate of convergence, R = − log %(MJ), of the Jacobi method is obtained for log x ≈
1− x as

R(MJ) = π2

(
Θx

(im+ 1)2
+

Θy

(jm+ 1)2

)
= π2 δ2 (

1

a2
+

1

b2
)

This yields the minimum number of iterations necessary to reduce the convergence error
by 10−m

ν =
m

R
= f (∆x,∆y, im, jm)

If one exemplary assumes that ∆x = ∆y and im = jm, on obtains

ν =
2m

π2
(im+ 1)2 ∼ im2

for the necessary iterations. It shows that with a growing number of grid points the number
of necessary iterations grows quadratic!

Comparison of the rates of convergence of iteration schemes

In a similar fashion as has been presented for the Jacobi iteration, the rates of convergence
of other iteration schemes can be determined. The rates of convergence of the above
discussed methods for the difference solution of Poisson’s equation with Dirichlet boundary
conditions are presented in the following table.
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R R/RJ ω

1 ) Point iteration

Jacobi RJ = δ2 π2

(
1

a2
+

1

b2

)
1 1

Gauss–Seidel RGS = 2RJ 2 1

accelerated Gauss–Seidel
(optimiert) RBGS = 2 δ π

√
2

(
1

a2
+

1

b2

)
2
√

2√
RJ

ωopt =

2−RBGS

2 ) Line iteration (line in x-direction)

Jacobi RLJ =
∆y2

2
π2

(
1

a2
+

1

b2

)
1 + ∆y2

∆x2
1

Gauss–Seidel RLGS = 2RLJ 2 (1 + ∆y2

∆x2
) 1

beschleunigter Gauss–Seidel
(optimiert) RBLGS = 2 ∆y π

√
2

(
1

a2
+

1

b2

)
2
√

2√
RJ

√(
1 +

∆y2

∆x2

) ωopt =

2−RBLGS

3 ) Line iteration (line in y-direction)

Jacobi RLJ =
∆x2

2
π2

(
1

a2
+

1

b2

)
1 + ∆x2

∆y2
1

Gauss–Seidel RLGS = 2RLJ 2 (1 + ∆x2

∆y2
) 1

accelerated Gauss–Seidel
(optimized) RBLGS = 2 ∆xπ

√
2

(
1

a2
+

1

b2

)
2
√

2√
RJ

√(
1 +

∆x2

∆y2

) ωopt =

2−RBLGS

The following definitions have been applied:

a = (im+ 1) ∆x b = (jm+ 1) ∆y δ2 =
∆x2 ·∆y2

2(∆x2 + ∆y2)

For the choice of a method for a given problem one should consider:

• The rate of convergence R should be as high as possible, since ν = m
R

• An accelerated scheme with optimized relaxation factor ωopt should be preferred, since
the iteration count of non optimized scheme is usually higher and increases quadratic
with the number of grid points.

• The computational effort per grid point is in proportion with the iteration count
and the number of floating point operations (FLOPs) of a method. Since implicit
line iteration schemes require more operations per grid point (around a factor three
more), it must be estimated which scheme is more beneficial, line iteration or point
iteration.
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• For the transformation of boundary conditions in the field (especially other conditions
than Dirichlet boundaries) the line iteration schemes are usually more beneficial, be-
cause the information transport on a line is performed directly. The best convergence
is obtained with line iteration schemes with alternating directions.

For more details for the determination of the rate of convergence see: E. Isaacson, H. B.
Keller: Analyse numerischer Verfahren. Verlag Deutsch, Zürich, 1973
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Chapter 2

Computational Fluid Dynamics II

2.1 Numerical solution of parabolic, partial differential
equations

2.1.1 Introduction

Important equations in fluid dynamics are of parabolic type, see also section 1 and 2 of
this script. Typical for these equations is that the solution of the characteristic polynomial
results in a double solution for the slopes of the characteristic lines (see chapter 3). The
solution of parabolic equations describe phenomena, where the information is transported
with infinite signal speed in a half space of the independent variables. Considering the
general partial differential equation of second order

a uxx + 2 b uxy + c uyy + F (ux, uy, u, x, y) = 0

the slopes of the characteristic lines result in

dy

dx
|1,2 =

b

a
± 1

a

√
b2 − ac

The equation is parabolic, if the discriminant b2 − ac vanishes. Therefore, the double
solution for the slope of the characteristic lines results in dy

dx
|1,2 = b

a
. Most equations in

fluid dynamics in Cartesian coordinates appear in their normal form, which means that the
mixed derivative in the equation above disappears (b = 0). The equation is parabolic, if
additionally one of the second order derivatives disappears, i.e., if a = 0 or c = 0. Examples
are the heat conduction equation (Fourier equation)

ut = ν uxx

or the streamwise momentum equation of the boundary layer equations:

uux = νuyy − vuy − px

67
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P

t

x

t

x0 x1

P

Figure 2.1.1: Domain of in-
fluence for the heat conduc-
tion equation.

For the heat conduction equation the domain of influence
is defined by its characteristic lines with the slope dt

dx
|1,2 = 0.

In the x − t plane for the point P at (xP , tP ), see Fig. 2.1.1,
the domain of influence is thus the half space below the point
P defined by t < tp. Therefore, an initial value problem has to
be solved in the time direction, for which the solution evolves
from an initial condition, e.g. from time t = 0 until tP . Ad-
ditionally, there is a boundary value problem in x-direction.
Due to the second derivative uxx, boundary values have to be
specifed at the left and right boundary of the domain, i.e., at
x1 and x2. The solution of such an initial and boundary value
problem is typical of parabolic, partial differential equations
and also applies for more complex equation systems such as
the Navier-Stokes equations. The solution of parabolic, par-
tial differential equations will be demonstrated in the following
by two examples.

The numerical solution a parabolic equation can be per-
formed with implicit and explicit finte difference methods.
The implicit solution allows an information transport with infinite speed in the bound-
ary value problem and the time step is not limited by a stability constraint. An explicit
solution method of a parabolic, partial differential equation introduces a finite information
propagation speed dependent on the time and spatial step size. Therefore, a hyperbolic
partial differential equation is solved by the computational approximation, see section 1.3.2.
The explicit scheme usually needs considerably less floating point operations per time step
than the implicit scheme, however, the maximum usable time step is limited. Therefore,
the ratio of physical time step, which is necessary to resolve the time scales in the physi-
cal problem, related to the maximum explicit time step, determine whether an explicit or
implicit scheme is compuatationally more efficient.

2.1.2 Numerical solution of the Fourier equation

u0

t

u0

h

x

y

u=0

t=0
t

u

Figure 2.1.2: Domain, boundary condi-
tions and velocity profiles for a Couette
flow

The temporal development of a simple flow
problem, the Couette flow, will be demonstrated
by the numerical solution of the Fourier equa-
tion. The Couette flow is a steady flow of an
incompressible fluid (density ρ, viscosity η) be-
tween two parallel plates of infinite extension.
At the time t = 0, one plate is suddenly accel-
erated to a constant velocity u0. The temporal
development of the velocity profile between the
plates until the asymptotic, steady state solu-
tion is reached, can be determined by a solution
of the simplified Navier-Stokes Equations.

Because of the assumption of a fully devel-
oped flow between infinitely extended plates the
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velocity component normal to the plates vanishes, i.e., v = 0. In addition, all gradients in
the flow direction vanish, i.e. ∂f

∂x
= 0 where f = u, v, p. The Navier-Stokes equations for

an incompressible fluid then reduce to a single equation, which is identical to the Fourier
equation. That is:

∂u

∂t
= ν

∂2u

∂y2

The initial conditions for t = 0 and boundary conditions for y = 0, y = h are:

initial condition at t = 0 u(t = 0, 0 ≤ y < h) = 0 u(t = 0, y = h) = u0

boundary conditions at y = 0, y = h u(t, y = 0) = 0 u(t, y = h) = u0

For the validation of the numerical solution an analytical solution for the linear parabolic
initial boundary value problem can be derived. That is:

u = u0 ·
∞∑
n=0

(erfc(2nηh + η)− erfc(2(n+ 1)ηh − η) )

erfc(x) = 1− erf(x) = 1− 2√
π

x∫
0

exp(−z2)dz

where η = y

2
√
ν t

and ηh = h
2
√
ν t
. The steady solution for ∂u

∂t
= 0 results in a linear

velocity profile u = u0 · yh .
The numerical solution occurs using a mesh with (jmax − 1) equidistant spatial steps

∆y and a time step ∆t.

n+1

n

t

y

j−1 j j+1 y=h
j=jmax

y=0
j=1

∆y = h
(jmax−1)

y = (j − 1) ∆y 1 ≤ j ≤ jmax

t = (n− 1) ∗∆t 1 ≤ n ≤ nmax

u(y, t) = unj

The initial and boundary conditions of the Couette flow in the discrete space become:

initial condition at tn=0 = 0 u0
1 = 0 u0

jmax = u0

boundary conditions at yj=1 = 0, yj=jmax = h un1 = 0 unjmax = u0

The numerical solution of the differential equation can be computed with a general
scheme using the parameter Θ, which controls whether an explicit or implicit scheme is
obtained. The discretized equation with the numerical diffusion number σ = ν ∆t

∆y2
reads:

un+1
j = unj +

(
1−Θ)σ(unj−1 − 2unj + unj+1) + Θσ(un+1

j−1 − 2un+1
j + un+1

j+1

)
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For Θ = 0 an explicit scheme with a truncation error on the order of O(∆y2,∆t), for Θ = 1
an implicit scheme on the order ofO(∆y2,∆t) and for Θ = 1/2 the implicit Crank-Nicholson
scheme on the order of O(∆y2,∆t2) is obtained.

The implicit solution results in a coupled, tridiagonal equation system for the unknown
solution vector un+1

j , j = 2, . . . , jmax−1. In many cases, especially for non-linear problems,
the equation system is not solved for the unknown un+1

j , but for the correction variable
∆unj = un+1

j −unj . The advantage using the correction varibale is that the spatial operator,
which defines the stationary solution, can be formulated independently of the solution
matrix, so that the equation system can be solved using a simplified or iterative solution
technique. The discretized equation formulated and sorted for the temporal correction
∆un, results in:

−Θσ∆unj−1 + (1 + 2Θσ)∆unj −Θσ∆unj+1 = σ(unj−1 − 2unj + unj+1)

This differential equation leads to the tridiagonal equation system:

aj∆u
n
j−1 + bj∆u

n
j + cj∆u

n
j+1 = rj

A direct solution method for the tridiagonal equation system was already discussed in
section 1.3.1. After determining the solution for ∆un, the new variables un+1

j can be
calculated.

un+1
j = unj + ∆un

The numerical solution method implemented in a FORTRAN program and results are
discussed in the lecture.

Solution of the Fourier equation
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Figure 2.1.3: Numerical solution of the ve-
locity profiles u

u0
= f( y

H
) for a Couette flow

at various time steps n.

The velocity field u
u0

= f( y
H

) for the
Couette flow is illustrated for various time
steps n in Fig. 2.1.3, which are computed
with the implicit scheme at Θ = 1 and
σ = 1.

2.1.3 Numerical solution of the
boundary layer equations

In the following, the numerical solution
of the boundary layer equations for two
dimensional, incompressible flows will be
discussed as an example for systems of
parabolic, partial differential equations.
The boundary layer approximation is an im-
portant approximation of the Navier-Stokes
equations since it allows to predict the vis-
cous drag of a streamlined body at a small fraction of the computational costs compared
to the Navier-Stokes equations. According to Prandtl, the prediction of a high Reynolds
number flow with thin viscous layers attached to a body surface, can be split in the solu-
tion of two equation systems, which are easier to solve than the Navier-Stokes equations.
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The inviscid exterior flow can be predicted by the potential flow or Euler equations, which
results in the pressure distribution around the body. The pressure distribution is then
used in the solution of the boundary layer equations to provide the information about the
viscous drag on the body. Prerequisites for the boundary layer approximation are high
Reynolds numbers Re � 1 and an attached boundary layer, where the boundary layer
thickness δ is much smaller than the length of the body L. In general it can be assumed
that δ ∼ L/

√
Re. With these assumptions the boundary layer equations can be derived

from the Navier-Stokes equations with suitable normalizations of all variables in the limit
of Re� 1.

The following normalized and dimensionless variables are introduced for two dimen-
sional incompressible boundary layers

x =
x̄

L
, y =

ȳ

L

√
Re , u =

ū

u∞
, v =

v̄

u∞

√
Re ,

η =
η̄

η∞
, ρ =

ρ̄

ρ∞
= 1 , p =

p̄

ρ∞u2
∞
,

where L, an variable with an overbar ¯ or the index ∞ denotes a quantity with dimensions.
Usually, the flow variables of the undisturbed flow, denoted by the index ∞, are used as
reference values. The Reynolds number Re is based on these reference values:

Re =
ρ∞u∞L

η∞

In the limit Re� 1 the boundary layer equations in dimensionless formulation are obtained.

ux + vy = 0

uux + vuy + px = (ηuy)y

py = 0

The viscosity η is a fluid property and often can be considered as a mere function of the
temperature, i.e., η = η(T ). For turbulent flows an additional closure assumption for the
Reynolds stresses must be introduced. Usually, an eddy viscosity approach is used, in
which η is replaced by an effective viscosity ηeff consisting of a laminar and a turbulent
component, i.e., ηeff = ηlaminar + ηturbulent. The solution properties of the boundary layer
equations are not influenced by such a turbulence closure approach such that the numerical
solution presented in this section can also be applied for turbulent boundary layers. For
further details on the boundary layer equations and their solutions see e.g. H. Schlichting:
Grenzschichttheorie. Verlag G. Braun, Karlsruhe.

The pressure p along a direction normal to the wall in the boundary layer is constant
(because of py = 0), its distribution along the streamwise direction p(x) is determined by
the inviscid external flow and has to be known. At the edge of the boundary layer δ(x) the
flow velocity u(x, y = δ(x)) in the boundary layer reaches approximately the value of the
inviscid flow ue(x). A smooth transition from the boundary layer solution to the external
inviscid flow requires all viscous stresses to vanish at the boundary layer edge. Therefore,
all gradients in y-direction must vanish at δ(x), i.e. uy = uyy = . . . = 0. The momentum
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equation in x-direction then yields a relation between the pressure p and the velocity of
the exterior flow ue at the edge of the boundary layer y = δ(x):

ueue,x + px = 0

Integration of this equations leads to the well known Bernoulli equation, p + u2
e/2 =

constant. For the solution of the boundary layer equations, it is convenient to express the
pressure by the exterior velocity ue, which results in the equation system for the unknown
velocity components u and v:

ux + vy = 0

uux + vuy − ueue,x = (ηuy)y

The resulting equation system is of parabolic type and leads to an initial value problem
in x-direction (corresponding to the time t in the Fourier equation) and a boundary value
problem in y-direction. The solution of the boundary value problem takes two boundary
conditions for u and one for v (according to uyy and vy). The boundary values for the
boundary layer can be assumed as following:

• Wall y = 0: u(x, y = 0) = uW (x) and v(x, y = 0) = vW (x)

With this the following cases can be simulated:

uW = vW = 0 solid, no-slip wall

vW < 0 suction of the boundary layer

uW > 0 , vw > 0 direct blow out of the boundary layer

• Edge y = δ: u(x, δ) = ue(x)

In addition the linking condition uy(x, δ) = 0 can be applied

to define the edge of the boundary layer δ, e.g.:

y = δ when |ue−u
ue
| < εedge � 1

The initial condition for x = x0

simply requires the velocity profile u(y), i.e.

x = x0 : u(x0, y) = u0(y)

The vertical velocity v(x0, y) is thus uniquely defined.

The solution of the initial boundary value problem of the boundary layer equations is achieved
with a so called marching scheme. Starting from the initial value at x0 a new solution for
x0 + ∆x is estimated from the boundary layer equations. The newly calculated solution
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is then taken as the initial value for the solution at x0 + 2∆x in the next step, etc.

x0 xmax

u j+1

u j

u j−1

v j

v j−1

y

δ

n−1 n

j

x
n−1 nn−1/2

In the following the development of a numerical solution will be demonstrated with a
simple but effective implicit solution scheme (Laasoonen scheme). The numerical solution
is carried out on a line x = xn with the initial condition on xn−1. In y-direction with
yj = (j − 1) ∗ ∆y constant step sizes ∆y are applied. The amount of points jmax and
the value of ∆y are fixed through the initial conditions. In the x-direction the boundary
layer can change its size, therefore it is evaluated for each step in x-direction. If necessary
additional points are added in y-direction. The momentum equations at the point P (xn, yj)
are expanded with backward differences for ux and central differences for the y-derivatives.
This results in a scheme with an accuracy of order O(∆x,∆y2). The discretized momentum
equations are:

R1 = un−1
j

unj − un−1
j

∆x
+ v

n−1/2
j

unj+1 − unj−1

2∆y
− un−1

e

une − un−1
e

∆x

−
(
ηn−1
j+1/2

unj+1 − unj
∆y

− ηn−1
j−1/2

unj − unj−1

∆y

)
/∆y = 0

For all emerging coefficients the known values on xn−1 are used, except for the vertical
velocity v which is newly solved at xn−1/2 with the continuity equation. It is therefore
beneficial to expand the continuity equation in the point P (xn−1/2, yj−1/2).

R2 =
1

2

(unj − un−1
j

∆x
+
unj−1 − un−1

j−1

∆x

)
+
v
n−1/2
j − vn−1/2

j−1

∆y
= 0

The difference equations R1 = 0 and R2 = 0 are combined in the so called residual vector
~Res =

(
R1

R2

)
. They form a coupled, algebraic equation system in the unknowns ~Vj =(

un

vn−1/2

)
for the points (j − 1, j, j + 1). The discretized boundary layer equations can

therefore be combined:
~Res(~V ) = 0

The residual vector ~Res(~V ) connects the variables of the adjacent points j− 1, j, j + 1, i.e.
~Res(~V ) = ~Res(~Vj−1, ~Vj, ~Vj+1) = 0

The solution is performed iteratively with a Newtonian iteration scheme, since the system
is non linearly coupled. Using a Taylor series expansion with the iteration index ν

~Res(~V ν+1)) = ~Res(~V ν) +
∂ ~Res

∂~V
|ν · (~V ν+1 − ~V ν) = 0
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the following iteration equation is obtained:

j+1∑
k=j−1

∂ ~Res

∂~Vk
· (~V ν+1

k − ~V ν
k ) = − ~Res(~V ν

j )

The fully expanded system with ∆~V ν
k = ~V ν+1

k − ~V ν
k results in a tridiagonal equation system

of the vectors ∆~V ν , where the coefficients are 2× 2 matrices (block tridiagonal system).

Aj ∆~V ν
j−1 + Bj ∆~V ν

j + Cj ∆~V ν
j+1 = − ~Res(~V ν

j )

A , B and C are the so called Jacobi matrices. Their elements are obtained from the
differentiation of the equations R1 = 0 and R2 = 0 in respect to the variables (un, vn−1/2)
for the point (j − 1, j, j + 1). For example:

Bj =
∂ ~Res

∂~Vj
=

∂(R1, R2)

∂(unj , v
n−1/2
j )

=

(
b11 b12

b21 b22

)

b11 = ∂R1

∂unj
= un−1

j /∆x+ (η
n−1/2
j+1/2 + η

n−1/2
j−1/2 )/∆y2 b12 = ∂R1

∂v
n−1/2
j

= (unj+1 − unj−1)/(2∆y)

b21 = ∂R2

∂unj
= 1/(2∆x) b22 = ∂R2

∂v
n−1/2
j

= 1/∆y

This block tridiagonal system can be solved with Gaussian elimination, analogous to the
method presented for scalar equations (Thomas algorithm).

∆~V ν
j = Ej ·∆~V ν

j+1 + ~Fj

By substitution of ∆~V ν
j−1 the recursion coefficients are obtained as:

Ej = (Aj · Ej−1 +Bj)
−1 · (−Cj)

~Fj = (Aj · Ej−1 +Bj)
−1 · (− ~Res− Aj · ~Fj−1)

The recursion coefficients are calculated stepwise for j = 2, · · · , jmax − 1, starting from

the boundary condition ~Vj=1 =

(
unW
v
n−1/2
W

)
at the wall, i.e. ∆~V ν

j=1 = 0 and thus Ej =

0 , ~Fj = 0.
Therefore, the variables u and v can be determined. For their calculation it must be
estimated if the area of integration is big enough, such that ymax = (jmax− 1) ∗∆y > δ.
The edge of the boundary layer δ is defined by the fact that the velocity u approaches its
exterior value ue apart from a small deviation εEdge ∼ 10−3 :

y = δ if |
une − u

n,ν+1
jmax−1

une
| < εEdge

with une − u
n,ν+1
jmax−1 = une − u

n,ν
jmax−1 − f1,jmax−1. If this condition doesn’t hold a further step
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∆y is added, i.e. jmax is set to jmax = jmax+1. The recursion coefficients are calculated
for this new point and again tested for the edge. If the condition is satisfied the variables
for the iteration ν + 1 are determined.
The correction variables ∆~V ν

j are obtained from the recursion of j = jmax− 1, · · · , 2 with
the boundary condition unjmax = une , with ∆~V ν

jmax = 0. (A boundary condition for vjmax is
not given and not necessary. The variables are determined from:

~V n,ν+1
j = ~V n,ν

j + ∆~V ν
j

The iterative solution at xn is repeated until the equation ~Res
n

= 0 holds up to a given
upper limit:

max|R1, R2| ≤ εRes

If the limit is satisfied the calculation for the next x-step can be carried out likewise.
The solution scheme for the implicit solution of a coupled equation system that has been
developed in this section, is applied in a similar fashion for the implicit solution of the
Euler and Navier-Stokes equations. The detailed solution steps will be dealt with in the
corresponding practice with a FORTRAN program and results.
The figure displays the develop-
ment of the coefficient of friction
cf = τw

ρ
2
U2
∞

on the length x/L on a
flat plate with laminar flow with
Re = 106.

0

0.005

0.01

0.015

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

c f

x/L

2.2 Numerical solution of scalar hyperbolic, differential
equations

2.2.1 Introduction

Hyperbolic, partial differential equations have real characteristics along which the infor-
mation is transported (characteristic solution, conformity condition). The characteristics
determine the area that is influenced by the solution and are therefore decisive for the
numerical solution schemes. Their derivation has already been shown in chapter 2.
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Hyperbolic differential equations can emerge in different
forms. An example for first order scalar equations is the
convection equation

wt + λwx = 0

The characteristic dx
dt
|1 = λ in this equation corresponds to

the slope of the basic characteristic curve.
Examples for scalar equations of second order are the wave
equation

utt − a2
0 uxx = 0

and the perturbation potential equation for supersonic flow
:

(Ma2
∞ − 1) Φxx − Φyy = 0

These equations have two real characteristics, in this case
dx
dt
|1,2 = ±a0 and dy

dx
|1,2 = ±1/

√
(Ma2

∞ − 1) respectively.
The region influenced by the solution is limited by the two
characteristics.
Systems of differential equations can also be of hyperbolic
type, e.g. the time dependent Euler equations for com-
pressible flows (see chapter 1):

Ut + Fx = 0

This equation system leads to three real characteristics
dx
dt
|1 = u and dx

dt
|2,3 = u ± a. As before the outer charac-

teristics limit the region of influence.

C1 C2

C1

C2

C3C2C1

C
x

x

x

x

t

t

y

t

α

α

The limited region of influence of hyperbolic differential equations leads to the solution of
an initial value problem. Therefore, the solution is developed from a non characteristic
curve along the characteristic (method of characteristics). Boundary conditions must be
predefined at the boundaries of the region since the domain of integration is usually lim-
ited. Similar to equations of parabolic type, this leads to combined initial boundary value
problems. The number of necessary boundary conditions depends on the characteristics
that point from the boundary to the interior of the solution domain.
For the formulation of a numerical difference scheme for a hyperbolic differential equation
it is necessary to capture the region of influence in order to obtain a convergent solution.
This is represented by the so called CFL condition which will be introduced in the next
chapter.
A further problem results from the numerical solution of hyperbolic differential equations,
describing wave transport of constant amplitude along the characteristic lines. Perturba-
tions occur in the course of the numerical calculation caused by discretization and round
off errors. Those perturbations evolve in the whole body and overlap the exact solution.
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This can be avoided by introducing so called damping terms which numerically suppress
the perturbations. Those numerical damping terms can either be added to the difference
scheme like in the central difference scheme, or they are already included in the discretiza-
tion, as it is the case in the upwind scheme. This issue will be discussed in a following
section.
The most important discretization schemes for differential equations of hyperbolic type will
be presented for a scalar model equation. The solution of the system of Euler equations will
be discussed in an own chapter. The different forms and solution properties and numerical
solution schemes will also be investigated.

2.2.2 Courant–Friedrichs–Lewy (CFL) condition

The CFL condition must be satisfied by the formulation of difference schemes for hyperbolic
partial differential equations. The condition goes:

For the convergence of the numerical solution of initial value problems for hy-
perbolic partial differential equations it is necessary that the numerical domain
of dependence of a difference scheme encloses the domain of dependence of the
differential equation

The dependency region of the differential equation is defined by the characteristics, whereas
the computational dependency domain of the difference scheme is determined by the step
size (stencil).The CFL condition demands to choose the step size such that the character-
istics are inside of the stencil. With this the characteristic solution is completely captured.
In a time dependent equation the characteristic is given as dx

dt

∣∣
C

= λ and the computa-
tional region of dependence is given by the step size ratio ∆x

∆t
. The CFL condition is then

expressed with:
∆x

∆t
≥ dx

dt

∣∣
C

= λ

This condition is often represented as the non dimensional Courant number C:

C =
dx

dt

∣∣
C
· ∆t

∆x
= λ

∆t

∆x
≤ 1

The Courant number C can be understood as the ratio of exact information rate dx
dt

∣∣
C

= λ

to computational information rate ∆x
∆t

.

To estimate the Courant number for equations with multiple characteristics, e.g. the
Euler equations with dx

dt

∣∣
C

= (u , u+ a , u− a), the biggest absolute value must be chosen,
i.e.:

C = max

(∣∣∣∣dxdt ∣∣C
∣∣∣∣) · ∆t

∆x
= (|u|+ a)

∆t

∆x
≤ 1

In the following the meaning of the CFL condition will be shown with a scalar model
equation.
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Example:

The scalar convection equation will be considered:

wt + λwx = 0 with λ = const. > 0

t+∆t

Ch

tgα = −
1

λ

α

x

t

t

The characteristic of this equation is given as dx
dt
|C = λ and the exact solution is given

as w(x, t) = w(x− λt). The region of influence is the straight line x− λt = const. The
Courant number is defined as C = λ∆t

∆x
.

Difference scheme:
a) explicit scheme, backward difference for wx

wn+1
i − wni

∆t
+ λ

wni − wni−1

∆x
= 0

Ch Ch

n+1

Ch

∆x ∆x∆x
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CFL condition satisfied CFL condition satisfied CFL condition not satisfied
∆x
∆t

> dx
dt
|C = λ ∆x

∆t
= dx

dt
|C = λ ∆x

∆t
< dx

dt
|C = λ

C < 1 C = 1 C > 1

von Neumann stability analysis stable scheme for C ≤ 1

b) explicit scheme, forward difference for wx

wn+1
i − wni

∆t
+ λ

wni+1 − wni
∆x

= 0

CFL condition: not satisfied
Neumann stability analysis unstable scheme for all C

c) explicit scheme, central difference for wx

wn+1
i − wni

∆t
+ λ

wni+1 − wni−1

2∆x
= 0

CFL condition: satisfied for C ≤ 1
von Neumann stability analysis unstable scheme for all C

=⇒i.e. CFL condition only necessary, but not sufficient!
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d) implicit scheme, central difference for wx

wn+1
i − wni

∆t
+ λ

wn+1
i+1 − wn+1

i−1

2∆x
= 0

CFL condition: always satisfied
=⇒values wn+1 are linked by x

von Neumann stability analysis absolutely stable for all C
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numerical sphere

2.2.3 Numerical damping

The numerical damping describes the dissipative effects of the numerical discretization er-
ror. The dissipation leads to a smoothing (smearing out) of the solution, similar to the
effects of viscosity. There is a big impact on numerical solutions of hyperbolic partial differ-
ential equations since the exact, characteristic solution only allows wave transport, but no
dissipation. Therefore, the numerical damping in the discretization can cause a distorted
solution.

Unwanted effects of the numerical damping
on the numerical solution of hyperbolic problems are e.g.:

• smearing out of the solution

• artifical vortex production and decay

• artifical entropy changes

Therefore, the numerical damping should be reduced to a minimum.

On the other hand, each numerical calculation leads to perturbations, e.g. caused by
round off errors which can be amplified and overlay the exact solution. In order to avoid
the spreading of these perturbations in the whole solution domain, they must be damped
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out in the course of the computation. In this respect the numerical damping can be used.
Desired effects of numerical damping

on the numerical solution of hyperbolic problems are:

• Damping of numerical perturbations in the solution domain

An accurate numerical solution can therefore not be obtained without a certain damping
of the discretization.

Numerical damping should be as small as possible and as big as necessary

It is important to follow this demand to achieve stability and accuracy for the numerical
solution. But it also takes very good numerical knowledge and experience.

Again a scalar model equation will be considered to discuss the effects of numerical
damping. Example of the numerical discretization error: The scalar convection equation

will be considered:
wt + λwx = 0 where λ = const. > 0

The exact solution for a periodic test function w(x, t) = V (t) · eIkx where the wave
number is k = 2π/λ is:

w(x, t) = V0 · eIk(x−λ∆t)

As a common property of hyperbolic equations the solution describes the transport along
the characteristic base curve (x− λ∆t) = const, but it doesn’t describe a variation of the
amplitude, i.e. V (t) = V0.

To enable a comparison a numerical solution, calculated with an explicit upwind scheme,
shall be examined.

wn+1
i − wni

∆t
+ λ

wni − wni−1

∆x
= 0

Taylor expansion of the difference scheme around xi = i·∆x and tn = n·∆t and substitution
with the differential equation wtt = λ2wxx + · · · leads to the partial differential equation
of the numerical approximation (see also chapter 3):

wt + λwx = c2∆x · wxx + c3∆x2 · wxxx − c4∆x3 · wxxxx + · · ·

The solution of the periodic test function for this equation is:

w(x, t) = V0 · eIk(x−λ∆t) · e−Ic3∆x2k3·∆t · e−(c2∆xk2+c4∆x3k4)·∆t

This solution demonstrates the effects of typical discretization errors, which occur in similar
appearance in nearly all numerical methods for hyperbolic equations.
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The possible error types are:

• dispersive errors ∼ e−I(c3∆x2k3)·∆t of the term ∼ c3∆x2wxxx
These errors cause a phase shift , i.e. a deviation of the characteristic ground curve
without an influence on the amplitude.

• Dissipative errors ∼ e−(c2∆xk2)·∆t of the term ∼ c2∆xwxx
These errors have an impact on the amplitude and have similar effects as the fric-
tion terms. Since the term is of O(∆x), it should be avoided by using higher order
discretizations.

• Dissipative errors ∼ e−(c4∆x3k4)·∆t of the term ∼ c4∆x3wxxxx
This error has also an effect on the amplitude, but it is limited to the high frequency
parts of the solution, since the amplitudes are strongly dependent on the wave number
(∼ k4 !). Therefore, this term is often referred to as high frequency damping term.

The different effects of the dissipative discretization error are used in the formulation of
numerical damping to suppress perturbations.

High frequency damping terms:
Round off errors cause fluctuations between adjacent
grid points, i.e. they are short waved perturbations. To
smooth out those perturbations, terms resulting from a
discretized fourth order derivation are used. High fre-

quency damping term: D(4) = ε(4)∆x3wxxxx
The often constant factor ε(4) serves the purpose of
adapting and minimizing the damping.

x

w

Shock damping terms:
In solutions of hyperbolic equations discontinuities, like
shock waves, can occur. If these are embedded in the
solution area very strong changes in the variables over
few step sizes occur. This causes large discretization
errors, especially in the non linear terms. The solution
displays strong deviations near the discontinuity. To
smooth out these deviations a strong damping term is
needed. As a common means the term∼ ∆xwxx which is
similar to the friction term, is used. It can be fine tuned
by the factor ε(2), depending on the solution. This term
diminishes in regions of small deviations.

Shock damping term: D(2) = ε(2)∆xwxx

x

w

The damping terms that control the numerical perturbations are either added to the
scheme (central schemes) or they are (for suitable discretizations) already included (up-
wind schemes). In the context of this course some examples will be presented in chapter
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8. Further details of the formulation won’t be discussed here. These formulations are the
object of recent numerical developments and can be found in specialist literature.

2.2.4 Important difference schemes for the scalar convection equa-
tion

The scalar convection equation:
wt + λwx = 0

will be used to display numerical solution schemes and their analysis. This equation is as-
sociated to the important Euler equations, since its structure reassembles the characteristic
form of the Euler equations. The formerly discussed basics lead to the following demands
concerning solution schemes:

1. Convergence
According to the Laxian theorem convergence can be proved for linear initial value
problems, i.e. consistency + stability = convergence. Such a proof is often not given
for non linear equations and boundary value problems. The validity of the solution
is often proved by comparison with other solutions or experiments.

2. CFL condition
The necessary demand that the numerical region of dependency is bigger or equal to
the characteristic region, can be uniquely satisfied for scalar equations with only a
single characteristic. Problems arise if multiple characteristics with alternating signs
occur, as it is the case with the Euler equations. Special formulations of the original
equations and the discretization must be used to take into account the different
characteristic directions of expansion (E.g. “Flux vector splitting “ =⇒see chapter 7
and 8 on Euler equations).

3. Accuracy
In applications of numerical computations a minimal accuracy of second order (O(∆2)
should be applied for the spatial discretization to avoid the numerical viscosity effects
of the discretization error ∼ wxx in smooth areas.

4. Non oscillatory solutions
To obtain non oscillatory solutions in smooth areas, short waved error components
must be suppressed by suitable high frequency damping terms.

5. Discontinuities
Discontinuities (e.g. shock waves) are solutions of non linear hyperbolic equations.
They occur especially in hypersonic flows. Discontinuities that are embedded in the
domain of integration can not be exactly (as a jump) dissolved by difference schemes,
since those schemes demand continuously differentiable equations. Numerically how-
ever, such discontinuities can be expressed without oscillations within few step sizes
by applying suitable so called “shock capturing” methods. This includes the con-
sideration of the characteristic direction of expansion and the formulation of shock
damping terms.
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Several difference schemes can be applied to satisfy this demands. A so called conserva-
tive formulation, like it is necessary for the Euler equations, will be used for the discrete
formulation of the convection equation wt + λwx = 0.

wn+1
i − wni

∆t
+ λ

wni+1/2 − wni−1/2

∆x
= 0

The location i ± 1/2 corresponds to the location of
the cell surface between the points i and i± 1 where
the Euler fluxes must be formulated.

i−1 i+1i

i−1/2 i+1/2

Central schemes

Central schemes are often used schemes for the solution of the Euler and Navier Stokes
equations. A spatial central difference can be obtained for the formerly discussed conser-
vative scheme by formulating mean values:

wi±1/2 =
1

2
(wi + wi±1)

This leads to the following central scheme:

wn+1
i − wni

∆t
+ λ

wni+1 − wni−1

2∆x
= 0

t

x
i+1i−1 i
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Typical properties of central schemes are:

• Second order approximation in space O(∆x2)
with only 3 points.

• Capturing of upstream and downstream in-
fluences, of positive and negative character-
istics

• Central differences cause decoupling of even
and odd numbered points. E.g. the station-
ary solution wi+1 = wi−1 has two decoupled
solutions, namely w1 = w3 = w5 = · · · and
w2 = w4 = w6 = · · · . A difference between
the two solutions which can be expressed as
ε leads to an oscillating overall solution.

• Central space differences do not
have a dissipative truncation error.
wi+1−wi−1

2∆x
= wx + wxxx · ∆x2

6
+ · · ·

• Therefore, high frequency damping terms ∼
wxxxx must be added to the central difference
to damp short waved perturbations.

wn+1
i − wni

∆t
+ λ

wi+1 − wi−1

2∆x
+D(4)(w) = 0

1 2 3 4 5 6
i

w

The fourth order damping is often formulated as:

D(4)(w) = ε(4) 1

∆t
∆x4 · wxxxx = ε(4) 1

∆t
· (wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2)

Where ε(4) is a constant, with a usual magnitude around O(10−2)
In the following central schemes this damping term won’t be displayed separately.
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Explicit central schemes

a) Basic central scheme

wn+1
i − wni

∆t
+ λ

wni+1 − wni−1

2∆x
= 0

Consistency wt + λwx = −wtt ∆t
2
− λwxxx

∆x2

6
+ · · · = O(∆t,∆x2)

Stability : (von Neumann analysis) → instable !

(In spite of the satisfied CFL condition at C ≤ 1)

Explanation of the instability by the Hirtsche stability analysis

with wtt = −λwxt = λ2wxx one obtains wt + λwx = −λ2 ∆t
2
wxx −

λwxxx
∆x2

6
+ · · ·

I.e. negative numerical viscosity νnum = −λ2 ∆t
2

which has an activating effect on the
flow.

b) Lax - Keller scheme

To obtain a simple but stable scheme the value wni in the scheme a) will be replaced
by the mean value w̄ni =

wni+1 +wni−1

2
.

wn+1
i − 1

2
(wni+1 + wni−1)

∆t
+ λ

wni+1 − wni−1

2∆x
= 0

Consistency : wt + λwx = −wtt ∆t
2

+ ∆x
2
· ∆x

∆t
wxx − λwxxx

∆x2

6
+ · · · = O(∆t,∆x)

Stability : stable for C = |λ| ∆t
∆x
≤ 1

Explanation of stability by Hirtsche stability analysis

wt + λwx = λ2 ∆t
2

(1/C2 − 1)wxx + · · ·

=⇒νnum = λ2 ∆t
2

(1/C2 − 1) ≥ 0 for C ≤ 1

⇒ Rarely applied scheme, since O (∆x) !

c) Lax - Wendroff scheme

The Lax Wendroff scheme is an exact and stable central scheme, it is therefore used
as a starting point for further schemes. The destabilizing term λ2 ∆t

2
wxx of the scheme

a) is compensated by an additional, equally sized term.

The derivation is done with the Taylor series expansion for wn+1
i : wn+1

i = wni +
wt|ni ∆t+ wtt|ni ∆t2

2
+O(∆t3) = wni − λwx|ni ∆t + λ2wxx|ni ∆t2

2
+ O(∆t3)
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The additional term∼ wxx uses a central discretization, such that the spatial accuracy
O(∆x2) can be preserved and the temporal accuracy O(∆t2) is increased. This leads
to the Lax - Wendroff scheme as :

wn+1
i − wni

∆t
+ λ

wni+1 − wni−1

2∆x
− λ2 ∆t

2

wni−1 − 2wni − wni+1

∆x2
= 0

Consistency :

wt + λwx = −λwxxx ∆x2

6
− ∆t2

6
wttt + · · · = O(∆t2, ∆x2)

Stability : stable for C = |λ| ∆t
∆x
≤ 1

Disadvantage The additional term requires costly matrix operations for equations
systems like e.g. the Euler equations Ut + Fx = 0 . With the Jacobian ¯̄A = ∂F

∂U
the

additional term becomes
=⇒ ∆t

2
Utt = −∆t

2
Fxt = −∆t

2
(Ft)x = −∆t

2
( ¯̄AUt)x = +∆t

2
( ¯̄AFx)x

It is therefore more beneficial for equation systems to execute the scheme in two steps.
This results in the so called predictor - corrector scheme by Mac Cormack.

d) Predictor - corrector scheme (Mac Cormack, 1969)

The predictor - corrector scheme by Mac Cormack is an often applied scheme for
the solution of the Euler and Navier Stokes equations. For linear equation systems
the two step scheme has the same features like the Lax-Wendroff scheme c), but it
doesn’t require additional matrix operations for equation systems. The stability and
consistency behavior is equal to the Lax-Wendroff scheme. The Predictor - Corrector
scheme can be obtained by substitution of the variable w̃ from the first step in the
second step.

1st Step (Predictor step)

w̃i = wni − λ
∆t

∆x
(wni − wni−1)

2nd Step (Corrector step)

wn+1
i =

1

2
(wni + w̃i) −

1

2
λ

∆t

∆x
(w̃i+1 − w̃i)

The forward and backward discretizations for the steps can be exchanged. The ex-
tension on two and three dimension can be performed in the same way.

e) Runge-Kutta scheme
The Runge-Kutta scheme for the solution of initial value problems of ordinary differ-
ential equations can be transferred to partial differential equations. For the integra-
tion according to Runge-Kutta the semi discrete differential equation is formulated
as

∂w

∂t
= −Res(w)
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where the residual Res(w) represents the discretized operator of the spatial deriva-
tives. This could be the spatial operator of the complete Euler equations, or as in
the present case, the operator of the scalar convection equation.

Res(w) = λ
wi+1 − wi−1

2∆x
= λwx + O(∆x2)

The solution for a time step ∆t is performed in several explicit steps which are marked
with the index k. There are many different variants for the multi stage formulation.
The following scheme has been proved useful for the solution of partial differential
equations of fluid dynamics (minimal memory requirements). For the integration
domain between t = n∆t and t + ∆t = (n+ 1) ∆t follows:

w
(0)
i = wni

w
(1)
i = w

(0)
i − α1 · ∆t ·Res (w(0))...

w
(k−1)
i = w

(0)
i − αk−1 · ∆t ·Res (w(k−2))

w
(k)
i = w

(0)
i − αk · ∆t ·Res (w(k−1))...

w
(n+1)
i = w

(N)
i

The number of steps N is chosen between 3 and 5.

Consistency : In the following the consistency shall be shown with a 3 step scheme
(N = 3). The variables w(k) of the intermediate steps are eliminated, which leads to
the differential equation, assuming the linear space operators Res(w), i.e. Res(a +
b) = Res a+Res b. The differential equation results in

wn+1 = wn−α3∆tRes(wn)+α3α2∆t2Res(Res(wn))−α3α2α1∆t3Res(Res(Res(wn)))

Using a Taylor series expansion

wn+1 = wn + wnt ∆t+ wntt
∆t2

2
+ wnttt

∆t3

6
+ · · ·

and the original equations

wnt = −Res(wn) = −(λwx +O(∆x2))

wntt = (−Res(wn))t = −Res(wnt ) = Res(Res(wn))

wnttt = −Res(Res(Res(wn)))

one obtains the differential equation of the difference approximation:

wt+λwx = (α3−1)wnt +(α3α2−
1

2
)wntt ∆t+(α3α2α1−

1

6
)wnttt ∆t2+O(∆t3)+O(∆x2)

This equation shows the consistency of the Runge Kutta scheme for α3 = 1 in time.
The temporal accuracy depends on the choice of the other α factors. The coefficients
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(αk ≤ 1) can be formulated such that the truncation error in time is minimized.
Therefore, the temporal accuracy is of order O(∆tN). In the above example this
leads to the values αk = 1

3
, 1

2
, 1 or in general:

αk =
1

N − k + 1
where k = 1, 2, · · ·N

Stability :

The stability factor G = V n+1

V n
according to the von Neumann stability analysis can

also be obtained by insertion of the intermediate steps. Using the Fourier expansion
w

(k)
i = V (k) eIθi and the abbreviation ∆tRes(w(k)) → V (k) eIθi λ∆t

∆x
I sin θ = V (k) eIθi z

one obtains for the 3 step scheme:

G = 1− α3 z + α3α2 z
2 − α3α2α1 z

3

The estimation of the stability limit is rather costly and generally performed numer-
ically. An interesting possibility in this respect is the optimization of the coefficients
αk for maximum stability. The theoretical stability limit for the N step scheme results
in:

Cmax = (|λ|∆t
∆x

)max = N − 1

An often applied set of coefficients for maximum stability of a central 5 step scheme
of order O(∆t2,∆x2) and Cmax = 4 is: αk = 0.25 , 0.166 , 0.375 , 0.5 , 1

The Runge Kutta method in the present formulation is today one of the most applied
explicit solution schemes for the Euler and Navier Stokes equations of compressible
flows.

Implicit central schemes

In contrast to explicit schemes implicit schemes are free of time step limitations due to
numerical instabilities. On the other hand their computational cost per time step is sub-
stantially higher. Therefore, implicit schemes are normally chosen for calculations with
noticeable larger time steps than explicit schemes. This is often the case when convergence
to a stationary solution is demanded.

a) Implicit scheme for one dimensional equations

An implicit scheme is obtained when the space operator for the new time step (n +
1)∆t is formulated. For the scalar convection equations such a scheme is:

wn+1
i − wni

∆t
+ λ

wn+1
i+1 − wn+1

i−1

2∆x
= 0

This scheme leads to a tridiagonal equation system for wn+1 with C = λ∆t
∆x

.

[−C/2] · wn+1
i−1 + [1] · wn+1

i + [C/2] · wn+1
i+1 = wni
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The solution of such a coupled equation system can be performed with the well known
Gaussian elimination (Thomas-Algorithmus).

Consistency: wt + λwx = ∆t
2
wtt − λwxxx

∆x2

6
+ · · · = O (∆t, ∆x2)

Stability : unlimited stability for all C

Implicit schemes can often be found in the literature in the so called correction for-
mulation, with the definition of the correction variables as :

∆wni = wn+1
i − wni

with the additional definition of the difference operator δx

δxwi =
wi+1 − wi−1

2∆x

the implicit scheme can be written as

(1 + ∆t λ δx ) ∆wni = −∆t λ δxw
n
i

wn+1
i = wni + ∆wni

The solution of the tridiagonal equation system is performed for the correction vari-
able.

b) Implicit schemes for multi dimensional equations

The formulation for two or three dimensions is carried out in a similar fashion like
the one dimensional case. The implicit scheme for two dimensions can be obtained
by defining the two dimensional convection equation:

wt + λxwx + λy wy = 0

and discretization in y direction with central differences:

δywi,j =
wi,j+1 − wi,j−1

2∆y

. When using the correction variables

∆wni,j = wn+1
i,j − wni,j

the two dimensional implicit equation is given as:

(1 + ∆t (λx δx + λy δy )) ∆wni,j = −∆t (λx δx + λy δy)w
n
i,j

wn+1
i,j = wni,j + ∆wni,j
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The solution of two dimensional, coupled equation systems has a high memory and
computation requirement for the generally large computational grids in fluid dynam-
ical calculations. Thus, one often tries to solve these multi dimensional systems
approximatively.
One possible approach for such a solution is the application of iteration schemes like
they are used for elliptical equations (e.g. Gauss Seidel method). Such iterative
schemes become more and more common in the solution of the Euler and Navier
Stokes equations. One prerequisite for such iterative schemes is a diagonal dominant
solution matrix. Such matrices normally result from the discretization of upwind
schemes which lead to very effective solution methods for steady problems. Iteration
schemes are usually not suitable for time accurate problems, since they are not con-
sistent in time.
Another possibility for the approximative solution is the method of approximate fac-
torization which also allows a time consistent solution and central discretization.

c) Implicit approximate factorization (Beam, Warming 1970)

The approximative factorization enables the decomposition of multi dimensional, im-
plicit schemes in a sequence of one dimensional steps. Since each one dimensional step
can be solved as a tridiagonal computational cost can be saved. Starting point for
this method is the above formulated two dimensional, implicit scheme. The (implicit)
left hand side can approximatively be decomposed in two factors:

(1 + ∆t λx δx ) (1 + ∆t λy δy ) ∆wni,j = (1 + ∆t λx δx + ∆t λy δy + O(∆t2)) ∆wni,j

If the last term is neglected ( factorization error O(∆t2)), the implicit scheme can be
written as:

(1 + ∆t λx δx ) (1 + ∆t λy δy ) ∆wni,j = −∆t (λx δx + λyδy )wni,j

If one defines the temporary occurring variable ˜∆wni,j :

˜∆wni,j = (1 + ∆t λy δy ) ∆wni,j

the scheme for a time step can be subdivided in several smaller steps:

1. Step
(1 + ∆t λx δx ) ˜∆wni,j = −∆t (λx δx + λyδy )wni,j

A tridiagonal equation system is solved in x-direction for ˜∆wni,j.

2. Step
(1 + ∆t λy δy ) ∆wni,j = ˜∆wni,j

A tridiagonal equation system is solved in y-direction for ˜∆wni,j.

3. Step
wn+1
i,j = wni,j + ∆wni,j
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The Method of approximative factorization is an important implicit solution method
for systems like e.g. the Euler equations. A drawback of this method is the factoriza-
tion error which causes a decreased convergence speed for big time steps. Therefore,
in realistic computations only maximum CFL numbers of C = O(10) can be applied.

Upwind schemes

Upwind schemes, also known as advective schemes, are useful in spatial discretizations
where the difference approximation is built single-sided from the direction of the char-
acteristic (Information from the “wind direction” =⇒upwind). This results in a better
representation of the characteristic behavior of hyperbolic equations than using central dif-
ferences. Therefore, upwind schemes are increasingly used in the simulation of gas dynamic
flows with numerical solutions of the Euler equations.

Typical features of upwind schemes are:

• The spatial discretization is different for positive and negative characteristics.

• Equation systems of multiple characteristics with different signs require the separa-
tion of the flux formulation according to the different domains of influence and the
corresponding upwind discretization (see Euler equations =⇒Flux splitting).

• Upwind schemes of first order result in non oscillatory solutions also for discontinu-
ities. But the solution is too inexact (smeared out) because of the truncation error
O(∆x).

• Higher order upwind schemes can be constructed with extrapolation methods.

• Because of their one-sided difference formulation, upwind schemes include dissipative
truncation errors ∼ wxx (only for first order discretization) and parts of ∼ wxxxx.
Artificial damping terms are unnecessary, the degree of damping is fixed by the dis-
cretization.

• Higher order upwind schemes require additional discretization elements to enable the
oscillation free, exact representation of discontinuities (TVD methods, Limiter,. . . ).
For details please refer to the specialized literature.
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a) First order upwind schemes

Starting point is the conservative discretization of the scalar convection equation wt +
λwx = 0 :

wn+1
i − wni

∆t
+ λ

wni+1/2 − wni−1/2

∆x
= 0

Since the discretization depends on the sign of
the characteristic, in the following the values with
i± 1/2 are declared as w+

i±1/2 for positive charac-
teristics and w−i±1/2 for negative characteristics.
For characteristics dx

dt
= λ > 0 the values wi±1/2

are replaced by the node values from the direction
of the (left) characteristic. i+1/2 i+1i

w w+ −

w+
i+1/2 = wi and w+

i−1/2 = wi−1

This results in an explicit scheme with a spatial backward difference.

wn+1
i − wni

∆t
+

λ

∆x
(wni − wni−1 ) = 0

In analogy to negative characteristics dx
dt

= λ < 0, the values wi±1/2 are replaced by the
node values of the direction of the (right) characteristic, i.e.

w−i+1/2 = wi+1 and w−i−1/2 = wi

This leads to an explicit scheme with a spatial forward difference.

wn+1
i − wni

∆t
+

λ

∆x
(wni+1 − wni ) = 0

Consistency wt + λwx = −wtt ∆t
2

+ |λ| · wxx ∆x
2

+ · · · = O (∆t,∆x)

Stability stable for C = λ ∆t
∆x
≤ 1

b) Higher order upwind schemes

Higher order upwind schemes are obtained by ex-
trapolation of the variables over several values on
the “cell walls” i ± 1/2. The sought after values
w±i±1/2 can be represented by a polynomial, built
from the neighboring values. For a second or third
order scheme four nodes are required for the poly-
nomial. w+

i+1/2 = P (wi−2, wi−1, wi, wi+1)

w−i+1/2 = P (wi−1, wi, wi+1, wi+2)

w

i+1 i+2i−1 i
i+1/2

i+1/2

+
w
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An often applied polynomial formulation by van Leer is based on a Legendre polynomial.
This extrapolation approach goes as follows:

(wi+1/2)+ = wi +
1

4
ϕ · [(1 + κ)(wi+1 − wi) + (1− κ)(wi − wi−1)]

(wi+1/2)− = wi+1 −
1

4
ϕ · [(1 + κ)(wi+1 − wi) + (1− κ)(wi+2 − wi+1)]

These formulations are inserted in the conservative discretization scheme. Two parameters
are used to setup the polynomial.

• The parameter ϕ allows to switch the scheme from first order (ϕ = 0) to at least
second order (ϕ = 1).
Note: The parameter ϕ is used in so called TVD schemes to regulate the numerical
damping term in order to enable a very high resolution of shock waves. In this case ϕ
is the so called limiter function which varies, depending on the neighboring gradients,
between the values 1 and 0.

• The scheme is defined by the discretization parameter κ. The following formulations
for the scheme are possible:

ϕ = 0 . ⇒ O(∆x) 1st order upwind

ϕ = 1 κ = −1 ⇒ O(∆x2) full upwind
ϕ = 1 κ = 0 ⇒ O(∆x2) ”half” upwind
ϕ = 1 κ = 1/3 ⇒ O(∆x3) ”half” upwind
ϕ = 1 κ = 1 ⇒ O(∆x2) central

To check the accuracy of the higher order upwind scheme a truncation error analysis can
be applied. This shall be demonstrated with the calculation of the truncation error of the

difference
w+
i+1/2

−w+
i−1/2

∆x
for λ > 0. The above extrapolation relation is applied to the values

w+
i±1/2 and the single differences are represented by Taylor series expansion. This leads to

the following relation for the spatial truncation error τ = (wx −
w+
i+1/2

−w+
i−1/2

∆x
) :

τ = (1− ϕ)
∆x

2
wxx − [1− 3

2
ϕ(1− κ)]

∆x2

6
wxxx − [3ϕ(1− κ)− (1− ϕ)]

∆x3

24
wxxxx + . . .

This relation shows that the difference is of first order accuracy for ϕ 6= 1 and that the
numerical viscosity νnum = (1 − ϕ)∆x

2
is controlled by the parameter ϕ. The difference is

for all parameter κ of at least second order accuracy if ϕ = 1. Third order accuracy is
obtained if the term ∼ wxxx vanishes, i.eκ = 1

3
.

This formulation of upwind schemes is the foundation for many modern solution meth-
ods for the Euler equations.

The upwind discretization can be implemented in explicit, as well as in implicit schemes.
These solution schemes correspond to the methods that were presented for central differ-
ences. The Runge Kutta scheme is often applied for the explicit method while the method
of approximate factorization and iterative schemes are used for implicit schemes.
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2.2.5 Scalar, hyperbolic equations of second order

Besides the first order equations of the type of the convection equation, the hyperbolic,
partial differential equations of second order have an important role in fluid dynamics.
Two examples for scalar equations of second order are the wave equation

utt − a2
0 uxx = 0

and the small disturbance equation in 2D for sub and supersonic flow:

(Ma2
∞ − 1) Φxx − Φyy = 0

In the following the solution of the hyperbolic small perturbation equation for hypersonic
flows is considered to demonstrate the numerical solution of such equations.

Formulation of a flow problem of the small disturbance equation

A difference solution of the small disturbance equation shall be applied to solve the hyper-
sonic flow (Ma∞ > 1) around a symmetric profile with the contour yk(x) and the depth L.
The profile is placed in a channel of height 2ymax with straight walls. Only one half of the
flow problem needs to be considered, since the problem is axis symmetric in the channel.
The domain of integration is displayed in the figure.

x

L L

xv
−( ) x

L L

xv
−( )y h [

2

L
k

L
= 4. − ]
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Ma

y

x xv v x

max

y
x

+L max

h

Profil:

Assuming small width of the profile, i.e. h� L, and therefore small perturbations caused
by the profile in the initial flow, the flow can be described by the small disturbance equation.
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Which is:

− β2 ϕxx + ϕyy = 0 with β2 = Ma2
∞ − 1 und Ma∞ > 1

The velocities and the pressure parameter are functions of the disturbance potential ϕ. I.e.

u − u∞
u∞

= ϕx ,
v

u∞
= ϕy , cp = − 2 · ϕx

The hyperbolic small disturbance equation describes an initial boundary value problem
with the x-coordinate as direction of the initial value problem.
Because of the second order derivative ϕxx the initial values at x = 0 require the definition
of two flow properties at the inflow, in this case:

x = 0 : u = u∞ → ϕx(0, y) = 0 und v = 0 → ϕy(0, y) = 0

The boundary conditions for y = 0 (symmetry axis) and y = ymax (channel wall) for the
flow problem are:

y = 0 xv ≤ x ≤ xv + L ϕy(x, 0) = dyk
dx

= y′k(x)
y = 0 x < xv x > xv + L ϕy(x, 0) = 0
y = ymax 0 ≤ x ≤ xmax ϕy(x, ymax) = 0

An exact solution of the flow can be obtained by using characteristics for ymax →∞ (free
initial flow). The characteristics for the equation are:

dy

dx
= ± 1

β
= ±

√
1

Ma2
∞ − 1

= ± tanα α = Mach angle

By application of a transformation dξ = dy − 1
β
dx and dη = dy + 1

β
dx one obtains the

normal form of the potential equation as:

∂2ϕ

∂ξ∂η
= 0 with the solution ϕ(x, y) = ϕ1(ξ) + ϕ2(η).

For the solution of the upper side of the profile one obtains with the boundary condition
ϕy = ϕξ · 1 = y′k(x) the potential ϕ and the pressure parameter

ϕ(x, y) = ϕ(ξ) = ϕ

(
y − 1

β
x

)
and cp = −2ϕx = −2ϕξ ·

(
− 1

β

)
=

2

β
y′k(x)

Numerical solution of the small disturbance equation

The problem is solved in the domain of integration 0 ≤ x ≤ xmax and 0 ≤ y ≤ ymax for
a Cartesian grid with constant step sizes ∆x and ∆y. This leads to xi = (i − 1) ∆x and
yj = (j − 1) ∆y.
The discretization of the small disturbance equation in point (i, j) is done by using central
differences for ϕyy.

ϕyy|i,j →
1

∆ y2
(ϕi,j−1 − 2ϕi,j + ϕi,j+1 ) +O(∆y2) ≡ ( δyy ϕ )i,j +O(∆y2)
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and backwards differences for ϕxx

ϕxx|i,j →
1

∆x2
(ϕi−2,j − 2ϕi−1,j + ϕi,j ) +O(∆x) ≡ ( δxx ϕ )i,j +O(∆x)

Depending on how the difference ( δyy ϕ ) is situated in relation to the point (i, j), different
explicit or implicit schemes of order O(∆x,∆y2) are obtained:

expl. expl. impl.i,j i,j i,j

−β2 ( δxxϕ)i,j +(δyyϕ)i−2,j = 0 −β2 (δxxϕ)i,j +(δyyϕ)i−1,j = 0 −β2 (δxxϕ)i,j +(δyyϕ)i,j = 0

The complete description of the discrete problem also requires the discretization of the
initial and boundary conditions.
The boundary conditions are gradient conditions of type ϕy = y′k(x). An approximation
of the boundary value for ϕ is obtained by substituting the gradient with a difference using
the next inner point.
I.e. ϕy|1 = y′k(xi) for the profile at y = 0 (j = 1). An approximation is found by applying
Taylor series expansion around j = 1 for ϕ of the nearest point to the wall, j = 2:

ϕ2 = ϕ1 + ϕy |1 ∆y + ϕyy |1 ∆y2/2 + · · ·

In this case, for simplicity the Taylor expansion shall be aborted after the second term:

ϕi,1 = ϕi,2 − y′k (xi) ·∆y

A higher order can be achieved by substitution of the third term with the potential equation,
i.e. ϕi,1 = ϕi,2 − y′k (xi) ·∆y + β2 · ∆y2

2
(δxx ϕ)i,1

In analogy the discretization can be performed for the boundary values on the symmetry
axis and the channel wall with y′k (xi) = 0.
The initial condition at x = 0 requires ϕx = 0 and ϕy = 0. Integration of ϕy = 0 results
in ϕ = const. = 0. Therefore, by using a first order boundary approximation for ϕx = 0,
the following initial value condition on the first columns i = 1 and i = 2 is obtained:

x = 0 : ϕx = 0 ⇒ ϕ1,j = 0, ϕ2,j = 0

In the following the solutions of an explicit and an implicit scheme will be discussed in
more detail. Because of the initial value problem in direction of the x axis the marching
schemes can be formulated in this direction. Starting from the initial value condition at
the points i = 1 and i = 2 the solution for i = 3 is calculated. The solution at i = 2 and
i = 3 respectively represents the initial value condition for the next point.
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Explicit scheme
After insertion of the differences of the defining equation for the unknown ϕi,j, the second
explicit scheme

− β2 ( δxx ϕ )i,j + ( δyy ϕ )i−1,j = 0

results in
ϕi,j = 2ϕi−1,j − ϕi−2,j + C2 (ϕi−1,j−1 − 2ϕi−1,j + ϕi−1,j+1)

The abbreviation C = | 1
β
| · ∆x

∆y
is the Courant number. The CFL

condition is a necessary condition that must hold for the explicit
scheme. The demand that the characteristics of the equation lie
inside the numerical region of influence results in the following con-
straints for the Courant number (see figure):

C = | 1

β
| · ∆x

∆y
< 1

The CFL condition is proved by the stability analysis according to von Neumann which is
sufficient for a linear and consistent initial value problem. Therefore, the scheme is stable
for:

∆x ≤ β ·∆y

Implicit scheme
After transformation, the implicit scheme

− β2 ( δxx ϕ )i,j + ( δyy ϕ )i,j = 0

results in a tridiagonal equation system[
C2
]
ϕi,j−1 +

[
− 2C2 − 1

]
ϕi,j +

[
C2
]
ϕi,j+1 = ϕi−2,j − 2ϕi−1,j

by using the common abbreviations:

aj ϕi,j−1 + bj ϕi,j + cj ϕi,j+1 = RSj

The solution with the Thomas algorithm, applying the recursion approach

ϕj = Ej · ϕj+1 + Fj

results, after substitution in the difference equation, in the following coefficients:

Ej =
− cj

aj Ej−1 + bj
, Fj =

RSj − aj Fj−1

aj Ej−1 + bj

The boundary values for E and F at j = 1 are obtained with the boundary value
ϕ1 = ϕ2 − y′k ·∆y ant the recursion approach ϕ1 = E1 ϕ2 + F1 as:

E1 = 1 und F1 = − y′k ·∆y
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Therefore, the recursion coefficients for j = 2, · · · , jmax − 1 can be determined. The
boundary value ϕjmax is needed to calculate the new values ϕj. It can be obtained from the
boundary value ϕjmax = ϕjmax−1 and the recursion approach: ϕjmax−1 = Ejmax−1 ϕjmax +
Fjmax−1 as:

ϕjmax =
Fjmax−1

1 − Ejmax−1

With this the new variables for j = jmax − 1, · · · , 2 can be calculated and the solution
can be continued for a new value xi. The CFL condition and the stability analysis for the
implicit scheme do not impose constraints for the Courant number C = | 1

β
| · ∆x

∆y
therefore,

the scheme is totally stable. The detailed solution and a corresponding FORTRAN program
will be presented in the course.
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2.3 Formulation of the Euler equations

2.3.1 Introduction

The Euler equations describe the conservation of mass, momentum and energy in an invis-
cid flow free of heat transfer. The Euler equations are simplifications of the Navier Stokes
equations, obtained by neglecting friction and heat terms. Orthogonal forces on the body,
i.e. pressure forces can be determined with the Euler equations, because of those simpli-
fications. The pressure in the inviscid flow has physical meaning as long as the influence
of the friction on the pressure distribution can be neglected. This is the case for e.g. high
Reynolds number boundary layer flows, since the pressure is determined by the inviscid
free stream pressure. This allows the calculation of lift and wave drag by solution of the
Euler equations, in important areas of the flow field. The Euler equations are valid without
constrains for subsonic, transonic and supersonic flows. They also admit the calculation
of gas dynamic processes. This general usability is the reason for the importance of the
numerical solution of the Euler equations in the project aerodynamic for aeronautics.
From the mathematical point of view the time dependent Euler equations form a system
of non linear, hyperbolic, partial differential equations. The different formulations of the
Euler equations have an important role in the solutions and will therefore be discussed in
the following section.
Nonlinear, hyperbolic equations fall into two different solution types, i.e. continuous and
discontinuous solutions. Continuous solutions are smooth, differentiable solutions. They
can be determined with the method of characteristics. Discontinuous solutions are volatile
solutions, like the shock waves. The general solution for this, by the integral, conservative
formulation of the Euler equation will be shown in a further section.
The numerical solution schemes for the Euler equations are based on the methods which
have already been presented for the scalar equations. What makes matters a bit more
difficult is the fact that several characteristics with sometimes different signs must be
considered, and the methods must be capable of capturing continuous and discontinuous
solutions. This requires special numerical treatment of the flux formulations, including
numerical damping. Examples for several important discretizations will be discussed.
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2.3.2 Different forms of the Euler equations

The calculation of the inviscid, compressible flow of a thermal and caloric ideal gas by the
Euler equations requires the following equations:

• Conservation equations for mass, momentum and energy

• thermal state equation : p = ρRT

• caloric state equation : cv = cv(T ), cp = cp(T ), R = cp − cv

• initial and boundary values

In the following the different formulations of the conservation equations will be considered.

Integral form

Since this form directly describes the balance in
a control volume, it can be viewed as the original
physical form of the Euler equations. For a closed
element of volume τ (t) and the surface A (t) the
conservation of mass (ρ), momentum ( ρ~v ) and
energy ( ρE ) per volume unit yields in an initial
system:

x

y

A

dA

n

τ

Mass :
∫
τ

∂ρ

∂t
dτ +

∮
A

ρ~v · ~n dA = 0

Momentum :
∫
τ

∂ρ~v

∂t
dτ +

∮
A

[ ρ~v ~v + p I ] · ~n dA = 0

Energy :
∫
τ

∂ρE

∂t
dτ +

∮
A

[ ρE~v + p~v] · ~n dA = 0

E describes the total energy E = e + ~v2 / 2, I is the unity tensor and ~n describes the
normal vector on the surface A.
The three conservation equations can be combined in a system:∫

τ

∂U

∂t
dτ +

∮
A

~H · ~n dA = 0

where U describes the vector of conserved properties and ~H represents the generalized flux
vector across the control surface.

U =

 ρ
ρ~v
ρE

 ~H =

 ρ~v
ρ~v ~v + p I
ρ~v E + p~v
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Conservation equations in the relative system

It is often convenient to formulate the conserva-
tion equations in a moving system to calculate un-
steady problems. For the derivation it is assumed
that the control volume τ moves with the velocity
~c relative to the reference system, fixed in space.
The temporal change of the conserved quantities
in the control volume τ , moving with the velocity
~c is in this case equal to the temporal change in
the reference system (local acceleration), plus the
transport of conservation properties caused by the
shift of the control volume.

(t)

n c

�������
�������
�������
�������

�������
�������
�������
�������

x

y

τ

A(t)

dA

d

d t

∫
τ(t)

U d τ = lim
∆t→0

1

∆t

 ∫
τ(t+∆t)

U(t+ ∆t) dτ −
∫
τ(t)

U(t)dτ

 =

∫
τ(t)

∂U

∂t
d τ +

∮
A

U ~c·~n dA

The temporal derivative in the moving system is defined as:

d

d t
=

∂

∂t
+ ~c · ∇

Therefore, one obtains the following conservation equation in the relative system:

d

d t

∫
τ

U d τ +

∮
A

( ~H − U ~c ) · ~n dA = 0

For the special case of a coordinate system moving with the stream velocity ~c, i.e. ~c = ~v,
the temporal derivative becomes the already known substantial derivative d

d t
= ∂

∂t
+ ~v ·∇.

Integral form in Cartesian coordinates

The integral form of the equations in a two dimen-
sional, Cartesian coordinate system (x, y, t) for a
control volume τ = τ (x, y) can be found when
the vectors are regarded component wise.

dA

dx

dy

n

~v =

(
u
v

)
, ~H =

(
F
G

)
, ~c =

(
cx
cy

)
, ~n dA =

(
d y
− d x

)
One obtains the integral form of the conservation equations

d

d t

∫
τ

U d τ +

∮
A

(F − U cx ) d y −
∮
A

(G − U cy ) d x = 0
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where U describes the vector of the conserved properties and F andG describe the Cartesian
components of the flux vector.

U =


ρ
ρ u
ρ v
ρE

 F =


ρ u

ρ u2 + p
ρ u v

u (ρE + p)

 G =


ρ v
ρ v u

ρ v2 + p
v (ρE + p)


Divergence form

A conservative, differential form (divergence form) of the Euler equations can be found by
application of the Gaussian theorem.∮

A

~H · ~n dA =

∫
τ

∇ · ~H d τ

If in the integral form of the Euler equations the surface integral is replaced by a volume
integral and a vanishing integrand is demanded for arbitrary volumes, the divergence form
of the Euler equations is obtained.

∂U

∂t
+ ∇ · ~H = 0

The differential forms of the conservation of mass, momentum and energy are:

∂ρ

∂t
+ ∇ · (ρ~v) = 0

∂ρ~v

∂t
+ ∇ · (ρ~v ~v + p I) = 0

∂ρE

∂t
+ ∇ · ~v (ρE + p) = 0

Divergence form for Cartesian coordinates

The equations in a two dimensional, Cartesian coordinate system (x, y, t) can be found by
component wise splitting of the vectors:

~v =

(
u
v

)
, ~H =

(
F
G

)
, ~c =

(
cx
cy

)
, ∇ =

(
∂
∂x
∂
∂y

)
This results in the divergence form of the conservation equations in Cartesian coordinates
as follows:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0
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where U describes the vector of the conserved properties and F andG describe the Cartesian
components of the flux vector.

U =


ρ
ρ u
ρ v
ρE

 F =


ρ u

ρ u2 + p
ρ u v

u (ρE + p)

 G =


ρ v
ρ v u

ρ v2 + p
v (ρE + p)


Quasi conservative form and Jacobian matrices

For the development of numerical solution methods and for the analysis of the conserva-
tive equations, Jacobi matrices for the fluxes are required. Jacobi matrices represent the
functional relation between the single flux components and the components of the vector
of the conservation values. For the divergence form

Ut + Fx + Gy = 0

with the fluxes F and G as a function of the conservation values U

F (U) =


F1(U)
F2(U)
F3(U)
F4(U)

 G(U) =


G1(U)
G2(U)
G3(U)
G4(U)

 U =


U1

U2

U3

U4


one obtains the Jacobi matrices A and B of the fluxes.

A =
∂F

∂U
=

∂ (F1, F2, F3, F4)

∂ (U1, U2.U3, U4)
where ak l =

∂Fk
∂Ul

(k, l = 1, · · · 4)

B =
∂G

∂U
=

∂ (G1, G2, G3, G4)

∂ (U1, U2.U3, U4)
where bk l =

∂Gk

∂Ul
(k, l = 1, · · · 4)

The quasi conservative form is formulated using the Jacobi matrices. Those equations no
longer have divergence form, nevertheless, the conservation values remain the dependent
variables. Therefore, the change in the fluxes is expressed by a change in the conservation
values, i.e.:

∂F

∂x
=

∂F

∂U
· ∂U
∂x

= A
∂U

∂x
and

∂G

∂y
=

∂G

∂U
· ∂U
∂y

= B
∂U

∂y

Thus, the quasi conservative Form is obtained from the divergence form and yields:

Ut + AUx + B Uy = 0

A special case is given by the Euler equations of a perfect gas. The non linear fluxes of
the Euler equations are in this case homogeneous functions of first order in respect to the
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conservation values. This means that the fluxes become linear functions of the conservation
values, coupled by the Jacobi matrix.

F (U) =
∂F

∂U
· U = AU and G (U) =

∂G

∂U
· U = B U

Example:
In the following the derivation of the Jacobi matrices for the one dimensional Euler equation
shall be demonstrated. Considered are the Euler equations Ut + Fx = 0 with the
conservative variables:

U =

 U1

U2

U3

 =

 ρ
ρu
ρE


The flux F (U) results in

F =

 F1

F2

F3

 =

 ρu
ρu2 + p
u(ρE + p)

 =

 U2

U2
2/U1 + p(U)

U2/U1 · (U3 + p(U))


with the pressure p(U) = (κ − 1) [U3 − 1/2 · U2

2/U1].
For the Jacobi Matrix A with the elements akl = ∂Fk

∂Ul
one obtains

A =

 0 1 0

− (3−κ)
2

u2 (3− κ)u κ− 1
u ((κ− 1)u2 − κE) κE − 3

2
(κ− 1)u2 κu



Non-conservative forms

All formerly discussed forms of the Euler equations like the integral and the divergence form
are based on the conservation values U as dependent variable, i.e. mass, momentum and
energy. They therefore directly represent the conservation laws of fluid mechanics. If one
chooses to select dependent variables which are non-conservative, the resulting equations
are called non-conservative forms. The non conservative forms can not be formulated in
integral or divergence form, because there will always occur variable dependent coefficients
in the differentials. For the numerical solution of the Euler equations these forms are
of minor importance, but they often lead to informations on the solution properties in a
more straightforward fashion. Many of the non-conservative forms can be formulated in
Lagrangian notion which is used for the description of the flow in a moving system. The
time derivative becomes in this case identical with the substantial derivative.

d

dt
=

∂

∂t
+ ~v · ∇ or in (x, y, t)

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

In the following two examples of non-conservative forms will be given. The equations will
be formulated in vector notation, i.e. in Cartesian coordinates (x, y, t).
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• Dependent variable V = (ρ,~v, E)T :

dρ

dt
+ ρ∇ · ~v = 0

d~v

dt
+ 1/ρ∇p = 0

dE

dt
+ 1/ρ∇ · (p~v) = 0

dρ

dt
+ ρ (ux + vy) = 0

du

dt
+ 1/ρ px = 0

dv

dt
+ 1/ρ py = 0

dE

dt
+ 1/ρ ( (pu)x + (pv)y) = 0

• Dependent variable V = (ρ,~v, p)T :

dρ

dt
+ ρ∇ · ~v = 0

d~v

dt
+ 1/ρ∇p = 0

dp

dt
+ ρ a2∇ · ~v = 0

dρ

dt
+ ρ (ux + vy) = 0

du

dt
+ 1/ρ px = 0

dv

dt
+ 1/ρ py = 0

dp

dt
+ ρ a2 (ux + vy ) = 0

Characteristic form

The Euler equations are a hyperbolic system of partial differential equations with real
characteristics. The characteristic form of the Euler equations is a special variant of the non-
conservative equations, built with the characteristic variable. According to the definition
of the characteristic solution, i.e. a solution independent from the neighbor solution, one
obtains a decoupled system for the Euler equations. The solution for each equation is the
characteristic solution for the corresponding characteristic line. This characteristic form is
the starting point for the development of the method of characteristics and the numerical
difference method of the Euler equations.
The hyperbolic system can be transformed in the characteristic form by diagonalization
of the system matrix. The system matrix is the matrix holding the coefficients of the
derivatives of the space derivatives. The time derivatives are multiplied with the unity
matrix, i.e. they don’t have coefficients. The eigenvalues λi of the system matrix become
identical with the characteristic, directional derivatives, i.e. λi = dx

dt
|i. A derivation of the

characteristic form can only be achieved for the one dimensional, time dependent Euler
equations. A complete diagonalization of multi dimensional equations is not possible, since
the diagonal transformation of the matrices preceding the spatial derivatives can vary for
each direction. The non-conservative form of the Euler equations is the starting point for

the diagonalization. If the conservative divergence form shall be diagonalized, the quasi
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conservative form has to be built first. With the vector of the dependent variables V of
the system matrix A and the unity matrix I one obtains the following equation:

I Vt + AVx = 0

The diagonal transformation of the matrix A into a diagonal matrix Λ with the real eigen-
values λi as diagonal entries, can be performed with the eigenvector matrix T und its
inverse T−1.

Λ = T−1 A T where Λ =

 λ1 0 0
0 λ2 0
0 0 λ3


The eigenvalues λi of the matrix A are λi = dx

dt
|i = (u, u+ a, u− a), i = 1, 2, 3.

The eigenvalues can be calculated from the determinant

|A − λi I | = 0

The calculation of the eigenvector matrix T = (~x1, ~x2, ~x3), whose columns consist of the
eigenvectors ~xi of the eigenvalues λi, results from the solution of the equation system

( A − λi I ) ~xi = 0 i = 1, 2, 3

The transformation of the Euler equations into the characteristic form is achieved by left
hand multiplication with T−1.

T−1 Vt + T−1 A T T−1 Vx = 0

T−1 Vt + ΛT−1 Vx = 0

Using the definition of the characteristic variables W

dW = T−1 dV

the characteristic form is obtained:

Wt + ΛWx = 0

or fully written:
∂wi
∂t

+ λi
∂wi
∂x

= 0 i = 1, 2, 3

The derivation of the characteristic form will be demonstrated for two different original
forms of the Euler equation. The matrix operations for the non-conservative form are
easier to perform, but the derivation of the conservative form is nevertheless important for
the development of upwind schemes.
1. Example:
As a starting point an easy to solve, non-conservative form with V = (ρ, u, p) is taken.

ρt + u ρx + ρ ux = 0
ut + uux + (1/ρ) px = 0
pt + u px + ρ a2 ux = 0
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The combined system yields:

Vt + a Vx = 0 ,where V =

 ρ
u
p

 a =

 u ρ 0
0 u 1/ρ
0 ρa2 u


From | a − Λ | = 0 one obtains the eigenvalues: λ1 = u , λ2 = u + a ,λ3 = u − a.
The eigenvectors ~xi = (x1

i , x
2
i , x

3
i )
T with i = 1, 2, 3 are determined by the equation system

(a − λi I ) ~xi = 0.

(u− λi)x1
i + ρx2

i + 0 = 0
0 + (u− λi)x2

i + 1/ρ x3
i = 0

0 + ρ a2 x2
i + (u− λi)x3

i = 0

The equation system for x1
i , x

2
i , x

3
i is undetermined, therefore each component can be

arbitrarily chosen.
λ1 = u x1

1 = − 1
a2

(chosen) → x2
1 = 0 , x3

1 = 0
λ2 = u+ a x3

2 = 1
2

(chosen) → x2
2 = 1

2ρa
, x1

2 = 1
2a2

λ3 = u− a x3
3 = 1

2
(chosen) → x2

3 = − 1
2ρa

, x1
3 = 1

2a2

The eigenvector matrices T = T (~x1, ~x2, ~x3) and T−1 result in:

T =

 − 1
a2

1
2a2

1
2a2

0 1
2ρa − 1

2ρa

0 1
2

1
2

 T−1 =

 −a2 0 1
0 ρa 1
0 −ρa 1


The characteristic variables are obtained from dW = T−1 dV

dW =

 dw1

dw2

dw3

 = T−1 ·

 d ρ
d u
d p

 =

 −a2 dρ + dp
ρa du + dp
−ρa du + dp


This yields the characteristic form of the Euler equations

∂wi
∂t

+ λi
∂wi
∂x

= 0

Written in separate equations one obtains

(pt − a2 ρt) +u (px − a2 ρx) = 0
(pt + ρa ut) + (u+ a) (px + ρa ux) = 0
(pt − ρa ut) + (u− a) (px − ρa ux) = 0

2. Example
As a starting point the divergence form of the one dimensional Euler equations is taken.

Ut + Fx = 0 with U =

 ρ
ρu
ρE

 F =

 ρu
ρu2 + p
ρuE + up
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The divergence form must be transformed into the quasi conservative form prior to the
derivation of the characteristic form (see above).

Ut + AUx = 0 with A =

 0 1 0

− (3−κ)
2 u2 (3− κ)u κ− 1

u
(
(κ− 1)u2 − κE

)
κE − 3

2(κ− 1)u2 κu


The diagonalization of the Jacobian Matrix A with an eigenvector matrix R is carried out
in the same fashion with:

Λ = R−1AR dW = R−1 dU Λ =

 u 0 0
0 u+ a 0
0 0 u− a


With the abbreviations:

a1 = − 1
a2

, a2 = 1
2a2

, b1 = κ−1
2
M2 , b2 = κ− 1 , M = u

a
the eigenvec-

tor matrix R of the conservative form yields:

R =

 a1 a2 a2

a1u a2(u+ a) a2(u− a)
a1u

2/2 a2(H + au) a2(H − au)

 R−1 =

 a2(b1 − 1) −a(b2M) b2
a2(b1 −M) −a(b2M − 1) b2
a2(b1 +M) −a(b2M + 1) b2


The characteristic form is equal to the one calculated in the first example.

Wt + ΛWx = 0 with dW = R−1 dU =

 −a2 dρ + dp
ρa du + dp
−ρa du + dp


The characteristic form of the Euler equations is the starting point for the method of

characteristics and the development of difference schemes, especially upwind schemes. The
latter will be discussed in a special section. The method of characteristics uses the solution
along a characteristic for the calculation of a flow. The characteristic form is transformed
into characteristic coordinates (=⇒canonical form) and integrated. The application of a
coordinate transformation dξi = dx − λi dt and dτi = dt yields:

∂wi
∂t

+ λi
∂wi
∂x

= 0 =⇒ dwi
dτi

= 0

This results in

dwi = 0 along dξi = dx − λi dt = 0

New values on a neighboring point P (x, t) can be
determined for a given initial condition w(o)

i on a non
characteristic curve.

ξ
ξ

ξ
1

2 3

t

x

w   (x,t+  t) 

w   (x,t)

∆

(0)

(1)

=const
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2.3.3 Discontinuous solutions of the Euler equations

There are two types of solutions for nonlinear, hyperbolic, partial differential equations,
continuous solutions and discontinuous solutions. According to the demands concerning the
differentiability of the solution one speaks of strong and weak solutions describing contin-
uous and discontinuous solutions of the equations, respectively (see e.g. Courant, Hilbert:
Mathematische Methoden der Physik). The continuous solution can be calculated from
the conservative as well as from the non conservative form, e.g. with the characteristics.
The discontinuous solution which describes a jump in the variables, can only be calculated
from the conservative form. The two varying solution types can be demonstrated with a
straightforward example.

Example: The nonlinear, hyperbolic model equation
ut + uux = 0 will be considered. The steady, con-
tinuous solution of this non-conservative form results
from:

uux = 0 → ux = 0 → u = const. → continuous

On the other hand, considering the steady solution
of the conservative form ut + (u

2

2
)x = 0 of the same

equation, one obtains by integration:

(
u2

2
)x = 0 → u2 = const. → u = ±

√
const. → unsteady

The solution of the conservative form therefore de-
scribes a jump in the variables!

u

u

x

x

The occurrence of the discontinuity can also be explained by taking a closer look on the
characteristics. The characteristics of nonlinear, hyperbolic equations, have gradients which
depend on the solution itself, i.e. the gradient shifts through the solution domain (in this
example dx

dt
= u). As a consequence the intersection between characteristics becomes

possible. In this case, the solution is no longer definite. One obtains a discontinuous
solution.
An equal solution behavior, on a more complex level, is displayed by the Euler equations
which form a non linear system of hyperbolic equations. The inviscid flow, described by
the Euler equations, can contain various types of discontinuities.
The best known discontinuity is the shock wave which describes the rapid compression of
a gas. The discontinuous solution yields for this case the jump conditions across the shock
wave, often called Rankine-Hugoniot relation. Such shock waves can also occur in steady,
super sonic flows, e.g. in a Laval nozzle or along a profile. They can also occur as an
unsteady phenomenon, in a subsonic flow, e.g. in a shock tube.
A different type of discontinuity is the contact discontinuity which separates gases of dif-
ferent elements species and state (see shock tube). A further discontinuity occurs from
the separation surface between two flows of different tangential velocity. This so called
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tangential discontinuity occurs for instance in the “inviscid” wake of a profile. The pressure
and normal velocity are constant across the tangential and the contact discontinuity. These
examples show the importance of unsteady solutions for flow problems. From the numerical
point of view these unsteady solutions can be quite challenging, since most numerical so-
lution schemes demand the differentiability of the solution (Taylor series expansion) which
is not granted in this case. This issue has already been addressed in the section on numer-
ical damping. Examples of solutions will follow in a preceeding chapter. Essential for the
numerical solution are the following conditions:

The calculation of discontinuous flows requires the solution of the conservative
equations!

It is important for the calculation of the flow to know the exact solution of the
discontinuity.

Unsteady solutions of the Euler equations

A general solution for a moving discontinuity
for the Euler equations can be determined in a
straightforward fashion. One considers the con-
trol volume τ which is divided by a discontinuity
C, across which the variables are discontinuous.
The velocity of the discontinuity is ~c. The laws of
conservation require the conservation of mass, mo-
mentum and energy in each sub volume τ1 and τ2

and in the entire volume τ = τ1 +τ2. The resulting
condition is the discontinuous solution of the jump
condition.
The conservation is described by the integral form
of the Euler equations for an arbitrary domain, in
a system, moving with the velocity ~c.

A

A

1

2

C

C
τ

τ2

1

d

dt

∫
τ

U dτ +

∮
A

( ~H − U ~c ) · ~n dA = 0

The conservation equations are formulated for each control volume:

Overall volume τ = τ1 + τ2 with the surface A = A1 + A2:

d

dt

∫
τ1+τ2

U dτ +

∮
A1+A2

( ~H − U ~c ) · ~n dA = 0

Sub volume τ1 with the surface A1+ ↑ C:

d

dt

∫
τ1

U dτ +

∫
A1

( ~H − U ~c ) · ~n dA +

∫
↑C

( ~H − U ~c ) · ~n dA = 0
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Sub volume τ2 with the surface A2+ ↓ C:

d

dt

∫
τ2

U dτ +

∫
A2

( ~H − U ~c ) · ~n dA +

∫
↓C

( ~H − U ~c ) · ~n dA = 0

The balance across the two sub volumes must be equal the overall volume. This yields the
requested jump condition across the discontinuity C;∫
↓C

( ~H − U ~c)2 ·~n dA +

∫
↑C

( ~H − U ~c)1 ·~n dA =

∫
↓C

{
( ~H − U ~c)2 − ( ~H − U ~c)1

}
·~n dA = 0

Such discontinuous solutions are often written with the definition “discontinuity in function
f ”, i.e. [f ] ≡ f2 − f1. Therefore, one obtains the following general solution across the
discontinuity: [

~H − U ~c
]
· ~n dA = 0

To clarify this, the relation for a Cartesian coordinate system (x, y, t) will be given. The
components of the vectors are:

~H =

(
F
G

)
, ~c =

(
cx
cy

)
, ~n dA =

(
d y
− d x

)

For the jumping condition
[
~H − U ~c

]
· ~n dA = 0 one obtains:

{
(F − Ucx )

dy

dx
|C − (G − Ucy )

}
2

=

{
(F − Ucx )

dy

dx
|C − (G − Ucy )

}
1

With this the jump condition for instance across a curved shock can be formulated.

Example:
One dimensional, running shock with shock velocity
vs:

=⇒cx = vs , cy = 0 , dy
dx
|C = ∞

The jump condition becomes [F − U · vs] = 0
and yields the conservation across the shock:
{ρ(u− vs)}2 = {ρ(u− vs)}1

{ρu(u− vs) + p}2 = {ρu(u− vs) + p}1

{ρ(u− vs)E + up}2 = {ρ(u− vs)E + up}1

For a predefined state 1 with velocity vs the
state 2 behind the shock wave can be determined.

V
S

C

12
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Example:
Two dimensional steady shock with shock angle σ

=⇒ ~c = 0 , dy
dx
|C = tan σ

The jump condition is {F · tan σ − G}2 = {F · tan σ − G}1

and yields the conservation across the shock wave:
{ρu tan σ − ρv}1 = {ρu tan σ − ρv}2

{(ρu2 + p) tan σ − ρuv}1 = {(ρu2 + p) tan σ − ρuv}2

{ρuv tan σ − (ρv2 + p)}1 = {ρuv tan σ − (ρv2 + p)}2

{ρuH tan σ − ρvH}1 = {ρuH tan σ − ρvH}2

C

21

β
σ
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2.4 Numerical solution of the Euler equations
The presentation of important solution methods will be carried out for the one dimen-
sional, time dependent Euler equations. All discussed schemes are based on the conserva-
tive discretization of the conservation equations for a small, discrete control volume. One
distinguishes between space and time discretization. The space discretization describes the
change in the fluxes across the control volume. One important space discretization of the
Euler equations, the central flux formulation, including the damping terms and the upwind
formulation with characteristic flux splitting, is introduced. The time discretization, essen-
tially defines the solution method. Some starting points for the formulation of explicit and
implicit schemes for the time discretization are presented. The numerical solution of the
Euler equations shall be demonstrated with an unsteady flow problem, i.e. the flow in a
shock tube.

The transfer of those solution methods on multi dimensional problems is in general
possible without great effort, since for this case principally a quasi one dimensional problem
can be formulated in each coordinate direction. The procedure for the space discretization
is demonstrated with two dimensional Cartesian and curved grids.

2.4.1 Formulation of the one dimensional Euler equations

The conservation of mass, momentum and energy in an inviscid flow is described by the
time dependent Euler equations which are presented for the one dimensional case. These
equations can be applied in integral as well as in divergence form for the numerical solution.
The integral form is: ∫

τ

Ut dτ +

∮
A

F · dy = 0

while the conservative divergence form is:

Ut + Fx = 0
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where U describes the vector of the conservative variables and F (U) represents the flux
vector.

U =

 ρ
ρ u
ρE

 F =

 ρ u
ρ u2 + p

u (ρE + p)


In the following a caloric and thermal ideal gas is assumed. The pressure p and speed of
sound a in such a gas are:

p = (κ− 1) ρ (E − 1

2
u2) a =

√
κ
p

ρ
κ =

cp
cv

= const.
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2.4.2 Spatial discretization of the fluxes

Conservative discretization

The domain of integration in the x − t plane is divided by a grid with tn = (n − 1) · ∆t
and xi = (i − 1) · ∆x. The space step size ∆x is assumed constant and can be obtained
from the integration length xmax and the maximum number of points imax. With this the
space step size becomes ∆x = xmax

imax−1
.

The time step size ∆t can either be defined by the numerical stability or by the demands on
the accuracy of the solution. In general it is governed by the predefined Courant number
C, i.e.

∆t = C · ∆x

|λ|max
where |λ|max = max

i
(|u|, |u− a|, |u+ a|) = max

i
(|u|+ a)

The maximum value of the Courant number C depends on the method (stability). For
unsteady problems, the Courant number is limited even for implicit schemes because of the
time accuracy. Often it is only of order C = O(1).
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i−1 i+1

i−1/2
F F

i+1/2

i

Conservative discretization requires the discretized equations to also comply with the law
of conservation. Starting from the integral conservation equations one defines a control
volume τ = ∆x · ∆y with the center point i, in which the conservation equations are
formulated. The variables are averaged over the control volume τ . Therefore, one obtains
constant values inside a cell. This yields∫

τ

Utdτ −→
∆Ui
∆t
·∆x∆y

for the temporal change. Where ∆Ui
∆t

is the discretized time derivative at the point i which
will be defined later by the solution method.
The temporal change of the conservative variables is in balance with the change of the
fluxes over the control volume. The location of the surface normal dA = ∆y of the fluxes
in x–direction is labeled with i ± 1/2. Geometrically they are assumed between the point
i and the points i± 1. (The value of ∆y doesn’t matter for the one dimensional problem.)
In the one dimensional case the flux balance results in:∮

A

F · ~n dA −→ (Fi+1/2 − Fi−1/2)∆y
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Therefore, one obtains the following discretized integral form:

∆Ui
∆t
·∆x∆y + (Fi+1/2 − Fi−1/2)∆y = 0

Division by the volume τ = ∆x · ∆y yields the difference form of the Euler equations.

∆Ui
∆t

+
Fi+1/2 − Fi−1/2

∆x
= 0

This difference form can also be obtained from the divergence form of the Euler equations,
by difference building:

Ut −→
∆Ui
∆t

Fx −→
Fi+1/2 − Fi−1/2

∆x

This straightforward example shows that the integral as well as the divergence form of the
Euler equations can result in the same difference form, provided that the law of conservation
also holds for the discretized form. This also applies for multi dimensional problems. It is
especially important for multi dimensional problems that the metric is properly fixed by
the conservative discretization, as has been shown.

The conservative divergence form is the starting point for the different solution schemes.
The next subsection deals with the different space discretizations for the fluxes Fi±1/2 like
central and upwind schemes.

Numerical flux function

The fluxes Fi±1/2 at the wall of the control volume are functions of the conservative variables
of the neighboring checkpoints. Therefore, for the points i ± 1/2 they must be approxi-
mated by interpolation polynomials. Because of this the discrete flux is also known as
Numerical flux function or numerical flux F̃i±1/2. The numerical flux for the point i+ 1/2

is for instance:
F̃i+1/2 = F̃i+1/2(Ui−1, Ui, Ui+1, Ui+2)

It is the aim of the space discretization to find a numerical approximation for the numerical
fluxes F̃i±1/2, at the walls of the control volume τ , such that the scheme is consistent in
space.
Consistency means that the change of the numerical flux in the limit ∆x→ 0 leads to the
divergence of the exact flux F , i.e.:

lim
∆x→0

F̃i+1/2 − F̃i−1/2

∆x
= Fx

Different space discretizations like the central upwind scheme have already been discussed in
the preceeding chapter (chap.6) on hyperbolic, scalar equations. In principle it is possible
to apply the therein presented schemes to the Euler equations. However, this requires
some considerations. First the Euler equations form a system, second their fluxes F (U)
are nonlinear functions and finally multiple characteristics exist (eigenvalues) with possibly
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different signs. Therefore, the definiteness of the space discretization is lost. There are
various possibilities of consistent discretizations. This is especially true for upwind schemes.

In the following the characteristic form of the Euler equations will serve as a starting
point to present a scheme for the derivation of numerical flux formulations. This form
consists of a system of decoupled, hyperbolic equations, similar to the formerly discussed
scalar model equations. In addition the characteristic form allows an unambiguous splitting
in reference to the sign of the characteristic and therefore an unambiguous formulation of
upwind schemes. Suitable formulations of the numerical fluxes can therefore be obtained
by reverse transformation of the discretized characteristic form back to the conservative
form. The initial form for this consideration is given by the divergence form of the Euler
equations

Ut + Fx = 0

For this a consistent approximation of the following form shall be determined:

∆Ui
∆t

+
F̃i+1/2 − F̃i−1/2

∆x
= 0

The Euler equations can, as already described in chapter 7, be transformed into the char-
acteristic form by using a diagonal transformation:

A =
∂F

∂U
Λ = R−1AR dW = R−1 dU Λ =

 u 0 0
0 u+ a 0
0 0 u− a


Wt + ΛWx = 0

This characteristic equation system can be discretized analogous to the conservative form.

∆Wi

∆t
+ Λ

Wi+1/2 −Wi−1/2

∆x
= 0

The different schemes which have been derived for scalar, hyperbolic equations, can be
applied to this discretized, characteristic form.
The tracing back to the conservative form can be achieved by conservative reverse trans-
formation. For the transformation of the difference equation it is assumed that the field of
characteristics is locally fixed. This means that all coefficients, e.g. Λ, R,A, can be assumed
to be constant at a point (xi, tn). Thus the transformation relation can also be defined for
the differences ∆f :

∆W = R−1∆U , A = RΛR−1 , ∆F = A∆U

Central schemes

Central schemes of order O(∆x2) are obtained by forming the average for the cell wall, e.g.
for Wi+1/2 the average is:

Wi+1/2 =
1

2
(Wi +Wi+1)
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This yields a central scheme of the form

∆Wi

∆t
+ Λ

Wi+1 −Wi−1

2∆x
= 0

The approximative reverse transformation with locally constant matrices back to the con-
servative form leads to the numerical flux of a central scheme, depending on the splitting:

F̃i+1/2 = F (
Ui + Ui+1

2
) res. F̃i+1/2 =

F (Ui) + F (Ui+1)

2

Both forms are consistent in the limit ∆x → 0 and approximate the central difference in
the linear case. Differences occur for the non linear flux function. In practice both forms
are used.

Additional numerical damping terms are required for central schemes to damp the numeri-
cal oscillations, as has already been discussed in chapter 6. Solutions of the Euler equations
which also include discontinuities, e.g. shock waves, require, apart from the high frequency
damping terms D(4) ∼ Uxxxx, damping terms to suppress non linear fluctuations close to
the shock solution (i.e.shock damping terms D(2) ∼ Uxx). For the uniform, conservative
presentation of a numerical flux formulation one defines the damping terms similar to the
fluxes:

Di(U) =
di+1/2(U)− di−1/2(U)

∆x

Thus, the numerical flux of a central schemes including the damping terms is:

F̃i+1/2 =
1

2
(F (Ui) + F (Ui+1)) + d

(4)
i+1/2(U) − d

(2)
i+1/2(U)

For completeness a detailed formulation of the damping terms like they often occur in
computations is given.
(A. Jameson, W. Schmidt, E. Turkel: Numerical Solutions of the Euler Equations by Finite
Volume Methods Using Runge-Kutta Time-Stepping Schemes. AIAA paper AIAA-81-1259,
1981)
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• The shock damping term D(2) ∼ Uxx suppresses non linear oscillations near the shock
solution

d
(2)
i+1/2(U) =

∆x

∆t
ε

(2)
i+1/2 (Ui+1 − Ui)

This term causes a strong dissipation which is necessary for an oscillation free solution
across a shock wave. This term is governed by the pressure change to restrict the
dissipation to the area of the shock wave. Thus, one gets a small dissipation for weak
changes in the pressure gradient.

ε
(2)
i+1/2 = κ(2) max(νi, νi+1) with νi =

|pi−1 − 2pi + pi+1|
pi−1 + 2pi + pi+1

The damping term is fine tuned by the constant variable κ(2) which usually has a
value κ(2) = O(1).

• The high frequency damping term D(4) ∼ Uxxxx
suppresses short waved oscillations in smooth solutions, e.g. those occurring because
of round off errors.

d
(4)
i+1/2(U) =

∆x

∆t
ε

(4)
i+1/2 (Ui+2 − 3Ui+1 + 3Ui − Ui−1)

Close to the shock solution, the damping term causes a broadening of the shock,
therefore it is suppressed in where the shock damping term becomes large. This
procedure is called blended damping.

ε
(4)
i+1/2 = max (0, (κ(4) − ε(2)

i+1/2)

The constant variable κ(4) = O(10−2) serves the tuning of the high frequency damping
term.

Upwind schemes

Upwind schemes take into account the characteristic di-
rection of influence, when forming the differences. The
space differences are formed from the direction of which
the information is transported along the characteristics.
This ensures a better numerical representation of the
exact, characteristic solution.
This also applies for the numerical solution of the Euler
equations. Upwind schemes are especially advantageous,
if strong gas dynamic wave phenomena like shocks and
expansions govern the flow field. This yields from the
fact that they often show a better numerical resolution
of the flow field. The necessity to take into account
non linear fluxes for different characteristics makes the
formulation of upwind schemes for the Euler equations
much more complex than for instance for scalar, hyper-
bolic equations.

x

t

C

x

tC
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In time and space the Euler equations have three dif-
ferent real characteristics (eigenvalues) λi = dx

dt
|i =

u , u− a , u+ a. In supersonic flows (u > a) all charac-
teristics have the same sign, but in subsonic flows one
characteristic always has a sign different from the two
remaining characteristics. As a consequence, different
discretizations (forward and backward differences) are
necessary for an upwind scheme, in the subsonic case.
For the conservative flux F this relation is not clearly
given since the flux is composed of components of vary-
ing characteristics. Therefore, a suitable splitting for the
numerical flux must be found, such that the single com-
ponents of the directions of influenced can be considered
(=⇒flux splitting).

t

t

x

x

u+a u u−a

u+a u u−a

For the characteristic form of the Euler equations a unique splitting in components with
positive and negative eigenvalues (directions of influence) and a formulation of upwind
differences is possible. Starting from this fact, a reverse transformation back to the con-
servative form can yield the approximative splitting of the fluxes F in components with
positive and negative eigenvalues and the formulation of upwind differences.
Varying conservative upwind schemes are possible because of the nonlinearity. Two major
concepts, when deriving the upwind scheme, shall be discussed in the following without go-
ing into too much detail for the context of this course. These concepts are the flux vector
splitting and the flux difference splitting.

Starting point for the derivation is the characteristic form of the Euler equations. As-
suming the eigenvalue matrix Λ to contain positive as well as negative eigenvalues a splitting
in corresponding components Λ± can be performed.

Λ = Λ+ + Λ− with Λ+ > 0 , Λ− < 0

With this the characteristic form is:

Wt + Λ+Wx + Λ−Wx = 0

The discretization according to the principle of the upwind schemes is carried out with
backward differences for Λ+ and forward differences for Λ−. Thus, i.e.:

∆Wi

∆t
+ Λ+ Wi −Wi−1

∆x
+ Λ−

Wi+1 −Wi

∆x
= 0

This discretized form is the starting point for the various conservative flux splitting schemes.
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Flux-Vector Splitting

The aim of the flux-vector splitting is to divide the numerical flux F̃ in components F±
which solely include the positive and negative eigenvalues respectively. Their sum must
represent the original flux, i.e. F = F+ + F−. Lefthand multiplication of the discrete
characteristic form with R and

RΛ±∆W = RΛ±R−1R∆W = A±∆U = ∆F±(U)

results in the conservative form:

∆Ui
∆t

+
F+(Ui)− F+(Ui−1)

∆x
+
F−(Ui+1)− F−(Ui)

∆x
= 0

This difference equation is formulated with the flux function F̃i±1/2 for the numerical flux,
for instance at the cell wall i+ 1/2 of the control volume, which is then given as:

F̃i+1/2 = F+(Ui) + F−(Ui+1)

For the introduction of a more general notion for the cell walls i±1/2 lefthand extrapolated
values U+

i+1/2 are defined for positive eigenvalues Λ+, where

U+
i+1/2 = Ui , U+

i−1/2 = Ui−1

The same is done for the righthand extrapolated values U−i+1/2 for negative eigenvalues Λ−:

U−i+1/2 = Ui+1 , U−i−1/2 = Ui

Using these definitions U± the numerical flux for the cell walls i+ 1/2 becomes:

F̃i+1/2 = F+(U+
i+1/2) + F−(U−i+1/2)

Again, because of the nonlinearity of the flux function, various consistent splittings of the
flux vector are possible.

The concept introduced by Steger and Warming for the Flux- Vector Splitting exploits the
above given conservative reverse transformation. The split fluxes are obtained from:

F±(U) = A± U = RΛ±R−1RW

The positive and negative eigenvalues are defined as follows:

Λ± =
1

2
(Λ± |Λ|)

The relations for the fluxes F± can therefore be determined from corresponding matrix
and vector multiplications. Since the concept from Steger and Warming is not applied
very often in the literature, further details won’t be discussed at this point. Steger, J.L.,
Warming, R.F.: Flux-vector splitting of the inviscid gas dynamic equations with applications
to finite-difference methods. J. Comp. Phys., vol 40, pp 263-293, (1981)
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Much more often the concept of van Leer for Flux-Vector Splitting is used for the solution
of the Euler equations.
van Leer, B.: Flux-vector splitting for the Euler equations. Lecture Notes in Physics vol.
170, pp. 507-512, (1982).
In this concept the split fluxes F± are approximated by a polynomial approach using the
Mach number Ma = u

a
. The following conditions are considered in this concept. First

the eigenvalues or the corresponding Jacobian matrices ∂F+

∂U
and ∂F−

∂U
must be positive and

negative, respectively. Second the overall flux must be conserved (F = F+ + F−) and
finally there must be a strict transition for F+ and F− at Mach number Ma = u

a
= ±1. It

could be verified in many applications that this concept allows effective implicit schemes
and satisfying resolutions of shock phenomena. The formulation of the fluxes F± will be
given in the following without derivation. Some additional modifications have also been
added.
Schwane, R., Hänel, D.: An implicit flux-vector splitting for the computation of viscous
hypersonic flow. AIAA-paper No. 89-0274, (1989).

The fluxes for subsonic flow −a ≤ u ≤ a are given as:

F±1 = ±1/4ρa(u/a± 1)2

F±2 = F±1 · (u+
p

ρa
(−u/a± 2)) für − a ≤ u ≤ a

F±3 = F±1 ·Ht

For supersonic flow, i.e. u > a respectively u < −a the flux is not split, since all eigenvalues
have the same sign.

F+ = F F− = 0 für u > a

F+ = 0 F− = F für u < −a

In this case the speed of sound is a =
√
κp
ρ
and the total enthalpy is Ht = E+ p

ρ
. In general

an extension to higher accuracy of the upwind scheme is necessary in order to get a more
accurate description of the flow in applied numerical calculations. The upwind scheme
with Flux-Vector Splitting, like presented above, uses three points in space i − 1, i, i + 1
which only leads to a scheme of first order accuracy O(∆x). Thus the scheme is highly
dissipative.
An improvement can be obtained by using a polynomial for the approximation of the
left and righthand side extrapolated values U±i+1/2 instead of using the direct neighboring
values Ui and Ui+1. This polynomial is based on several points and extrapolated onto the
cell walls. For a second order scheme it is sufficient to linearly extrapolate the variables
onto the cell wall. For third order accuracy a second order extrapolation must be used. In
general a polynomial with four basis points is used for the left respectively righthand side
extrapolated values U±i+1/2, i.e.

U+
i+1/2 = P+ (Ui−2, Ui−1, Ui, Ui+1, )

U−i+1/2 = P− (Ui−1, Ui, Ui+1, Ui+2)
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An often applied polynomial formulation for upwind schemes was introduced by van
Leer (MUSCL extrapolation =⇒Monotonic Upstream Schemes for Conservation Laws).
van Leer, B.: Towards the ultimate conservative difference scheme V. A second-order sequel
to Godunov’s method. J. Comp. Phys. vol.32, pp.101-136, (1979).
This formulation has already been mentioned in chapter 6. For the conservative variables
U the formulation yields:

(U+
i+1/2)+ = Ui +

1

4
ϕi · [(1 + κ)(Ui+1 − Ui) + (1− κ)(Ui − Ui−1)]

(U−i+1/2)− = Ui+1 −
1

4
ϕi+1 · [(1 + κ)(Ui+1 − Ui) + (1− κ)(Ui+2 − Ui+1)]

The numerical flux is formulated with these extrapolated values.

F̃i+1/2 = F+(U+
i+1/2) + F−(U−i+1/2)

With the aid of the parameter ϕ and the discretization parameter κ the scheme can be
varied.

ϕ = 0 . ⇒ O(∆x) 1. order upwind

ϕ = 1 κ = −1 ⇒ O(∆x2) full upwind
ϕ = 1 κ = 0 ⇒ O(∆x2) ”half” upwind
ϕ = 1 κ = 1/3 ⇒ O(∆x3) ”half” upwind
ϕ = 1 κ = 1 ⇒ O(∆x2) central

The parameter ϕ plays an important role for higher
order upwind schemes, especially for shock capturing.
When ϕ = 0, one obtains a first order scheme and thus a
strongly dissipative behavior, while for ϕ = 1 the scheme
is of higher order accurate. This feature can be exploited
by tuning ϕ to suppress numerical oscillations.
For strong changes of U , e.g. close to shocks and es-
pecially close to extrema, the extrapolation of U± can
result in an over or undersized value for the cell wall.
This would cause unwanted oscillations of the numeri-
cal solution. The extrapolation is limited by decreasing
the parameter ϕ to avoid this effect. Therefore, the
parameter ϕ is also called flux limiter or slope limiter.
The limitation of the extrapolation is locally achieved
from the solution itself, by expressing the flux limiter
with the change of U on the left and right side of the
point i.

+
u

i+1/2

+
u

i+1/2

i−1

i−1

i

i

i+1

i+1

i+2

i+2

u

u

i+1/2

i+1/2

ϕ<1

ϕi = ϕ(Ui+1 − Ui , Ui − Ui−1)

The flux limiter ϕ in the above definition varies between the values ϕ = 0 and ϕ = 1, i.e.
between a first order and an at least second order scheme. A first order scheme generates
a numerical dissipation ∼ Uxx and thus suppresses oscillations. This dissipation, therefore,
supports the geometrical limitation. As a consequence the solution is smooth in areas of
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strong fluctuations, e.g. shock waves. Outside of these areas the solution is governed by
higher order schemes.
The flux limiter ϕ is a nonlinear function of the change in the variables. The formulation
of the dependence on the change can mathematically be performed according to the theory
of monotonic difference functions. A very successful method in this respect is the assump-
tion of total variation diminishing (TVD). Essential methods for the development of high
resolution difference schemes are based on these theories (see Harten, Osher, Sweby etc.)
In spite of the fact that the rigorous derivation, according to these theories is only valid
for scalar, one dimensional equations, their application on systems and multi dimensional
equations has lead to improved schemes. The flux limiter according to van Albada,van Leer
and according to Roe will be given as examples for often applied flux limiters ϕi developed
from the TVD theory. Using the abbreviations ∆+ = Ui+1 − Ui and ∆− = Ui − Ui−1 the
flux limiters are:

ϕi|Alb =
2 ∆+ ·∆−

(∆+)2 + (∆−)2

ϕi|Roe =

{
min

(
| 2 ∆+

∆++∆−
| , | 2 ∆−

∆++∆−
| , 1
)

0 falls sign(∆+) 6= sign(∆−)

The following steps need to be performed for the formulation of the described upwind
schemes with Flux Vector Splitting, starting from a known distribution Ui:

• Calculate the flux limiter ϕi

• Calculate the left and righthand extrapolated values U±i+1/2

• Calculate the split fluxes F±(U±i+1/2)

• Calculate the numerical flux F̃i+1/2 = F+(U+
i+1/2) + F−(U−i+1/2)

and implement it in the given solution method.

Instead of using conservative variables, the extrapolation can also be performed with a set
of different variables like for instance ρ, u, p. The presented formulation shows one possible

approach, other different variants for Flux Vector Splitting can be found in the literature.
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Flux-Difference Splitting

The concept of Flux-Difference Splitting was first originally introduced by Roe in:
Roe, P.L.: Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. J.
Comp. Phys., Vol.43 (1981).
In contrast to the flux vector concept, this method splits the numerical flux in a central
formulated flux and an additional upwind term. The latter is added to the central flux,
such that an increasing value of the characteristic leads to a unilateral upwind formulation
for the numerical flux. A further effect of the upwind term is the damping of the numerical
oscillations which occur in central difference schemes.

Starting point for the derivation of this concept is the discretized, characteristic form
of the Euler equations:

∆Wi

∆t
+ Λ+ Wi −Wi−1

∆x
+ Λ−

Wi+1 −Wi

∆x
= 0

The positive and negative eigenvalues Λ± are replaced by

Λ± =
1

2
(Λ± |Λ|)

Restructuring of the equation yields the following difference equation:

∆Wi

∆t
+

1

2
Λ

(Wi+1 +Wi)− (Wi +Wi−1)

∆x
− 1

2
|Λ| (Wi+1 −Wi)− (Wi −Wi−1)

∆x
= 0

The first space difference corresponds to a central difference, while the second represents
the upwind term. For Λ > 0 a backward difference is obtained for the discretization and
for Λ < 0 a forward difference is obtained.
The conservative form

∆Ui
∆t

+
F̃i+1/2 − F̃i−1/2

∆x
= 0

can again be obtained by lefthand multiplication of the eigenvector matrix R. Then, the nu-

merical flux results in F̃i+1/2 =
1

2
(F (Ui) + F (Ui+1))− 1

2

∣∣A(Ūi+1/2)
∣∣ (Ui+1 − Ui)

Structurally the matrix |A| corresponds to the Jacobian A = ∂F
∂U

= RΛR−1, except that it
was constructed using the absolute eigenvalues, i.e.:

|A| = R |Λ|R−1

This matrix has to be formulated at the cell wall i + 1/2. Therefore it is formed by mean
values Ūi+1/2 = Ū(Ui, Ui+1). The arithmetic mean value Ūi+1/2 = Ui+Ui+1

2
is suitable for

this. A better shock resolution can be obtained with an averaging scheme according to Roe.
The mean values are determined such that they satisfy the shock conditions for a steady
shock between the points i and i+ 1. This yields Ūi+1/2 such that

A(Ūi+1/2) · (Ui+1 − Ui) = Fi+1 − Fi
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From this the mean values of the velocity ū and the total enthalpy H̄t result in:

ūi+1/2 =
Dui+1 + ui
D + 1

, H̄ti+1/2 =
DHti+1 +Hti

D + 1
, D =

√
ρi+1 / ρi

For Ht = κ p
(κ−1) ρ

+ 1
2
u2 and a2 = κp

ρ
, all necessary values for the calculation of |A| are

obtained.

In the case that an eigenvalue λ of the upwind matrix |A| becomes very small (close
to zero) the formulation of the numerical flux becomes problematic. The component of
the upwind term |A|∆U representing this eigenvalue gets lost and the difference equation
becomes non dissipative for this component since only the central difference remains. For
this case the direction of the change of entropy across a discontinuity is not fixed which
can cause unphysical solutions, e.g. expansion shocks. In addition the elements |λk| of
the diagonal matrix |Λ| can not be differentiated at λk = 0 which makes the convergence
worse, especially for implicit schemes. Because of these reasons, when determining |A|, the
matrix |Λ| is replaced by an approximate diagonal matrix Q(λ) which can be differentiated
for λk = 0. An example for such a matrix with a method dependent constant, the so called
entropy correction factor δ = O(10−1) is :

|Λ| → Q(λ) = diag

{
1
2
(λ

2

δ
+ δ) |λ| < δ

|λ| |λ| ≥ δ

The upwind matrix |A| is formed with this function, i.e.:

|A| = RQ(λ)R−1

In the presented form the numerical flux F̃i+1/2 in the Flux-Difference Splitting results in
a first order upwind scheme as can be easily verified by considering the amount of base
points, namely three.

For realistic applications a generalization for higher order accuracy is necessary.

The MUSCL-extrapolation like it has been presented for the Flux Vector Splitting is a
possible option. Therefore, the values Ui and Ui+1 in the numerical flux are replaced
by left and right handedly extrapolated values U+

i+1/2 and U−i+1/2, using the above given
extrapolation scheme. This yields the numerical flux of the Flux-Difference Splitting

F̃i+1/2 =
1

2
(F (U+

i+1/2) + F (U−i+1/2))− 1

2

∣∣A(Ūi+1/2)
∣∣ (U−i+1/2 − U

+
i+1/2)
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The modified flux approach according to Harten is another possibility to increase the ac-
curacy of the scheme. This approach is most often applied for the Flux-Difference Split-
ting. Harten, A.: On a Class of High Resolution Total-Variation-Stable Finite-Difference
Schemes. SIAM J. Numer. Anal., Vol.21 (1983).
In the modified approach an additional flux term gi+1/2 is added to the already existing
first order numerical flux.

F̃i+1/2 =
1

2
(F (Ui) + F (Ui+1))− 1

2

∣∣A(Ūi+1/2)
∣∣ (Ui+1 − Ui) + gi+1/2

This flux term is chosen such that the first order upwind term is compensated which
results in a scheme of second order accuracy. Close to shocks, where upwind differences
and increased numerical dissipation is necessary for a better shock resolution, the flux term
gi+1/2 must diminish, such that the original first order upwind scheme is retained. The
formal condition for the additional flux term is therefore:

gi+1/2 → 1
2
|A|i+1/2 (Ui+1 − Ui) → in smooth areas O(∆x2)

gi+1/2 → 0 → for extreme values, shocks O(∆x)

The tuning of the flux term gi+1/2 is carried out with a limiter function ϕ, as has been
already described for the Flux-Vector Splitting.
In a strongly simplified form, the flux term gi+1/2 can be formulated as follows:

gi+1/2 = ϕi+1/2 ·
1

2
|A|i+1/2 ∆+Qi 0 ≤ ϕ ≤ 1

Examples for the limiter function ϕ are already given for the Flux-Vector Splitting. For
strong changes in the variables (extrema, shocks) ϕ approaches zero, while for minor
changes ϕ is close to one.

The presented simplified form shows the essential principle for the modified flux ap-
proach in higher order Flux-Difference schemes. For real world applications, further re-
finements are necessary. A presentation of different formulations of this concepts can for
instance be found in:

Yee, H. C., Warming, R.F., Harten A.: Implicit Total Variation Diminishing (TVD)
Schemes for Steady-State Calculations. J. of Comput. Physics, vol 57, pp 327-360, (1985).

Yee, H. C.: A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods.
Lecture Series 1989-04, von Karman Institute for Fluid Dynamics, Rhode-St-Genese, Bel-
gium, (1989).
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2.4.3 Time discretization (Solution methods)

In the preceeding section the space discretization of the fluxes were considered, and pre-
sented in the general conservative difference equation for the numerical flux function. This
equation is the starting point for the different solution schemes which are defined by their
discretization in time. These schemes essentially vary in the way they perform the dis-
cretization of the time derivative Ut and by the way the space discretization is done (e.g.
implicit, explicit).
One can decide between schemes whose time discretization is dependent on or independent
from the time discretization. If a time dependency exists, the steady solution also depends
on the chosen time step. An example for this is the Mac Cormack scheme (Lax-Wendroff
Method). This dependency is often disadvantageous, therefore most often schemes with in-
dependent time and space discretizations are used. Advantages are: time step independent,
steady solutions, possible improvements of the convergence because of the application of
iterative schemes for steady solutions and separate treatment of space and time discretiza-
tion. The examples that will be discussed for this case in the following are the explicit
Runge-Kutta method and implicit schemes in correction notation.

Mac Cormack’s method, 1969

Mac Cormack’s method is an example for schemes whose time discretization and space
discretization are not independent from each other.
Mac Cormack’s method is one of the first successful schemes for the solution of the Navier-
Stoles and Euler equations. It is an often used scheme also today. This scheme has the
same features for scalar equations as the Lax-Wendroff scheme (see chapter 6). It therefore
corresponds to a central, explicit scheme of order O(∆t2, ∆x2).

The two step method for the Euler equations Ut + Fx = 0 is given as:

1. Step (Predictor):

Ũi = Un
i −

∆t

∆x
(F (Ui) − F (Ui−1))

2. Step (Corrector step):

Un+1
i =

1

2
(Ũi + Un

i ) − 1

2

∆t

∆x

(
F (Ũi+1) − F (Ũi)

)
Ũi is a temporary variable that is located between tn and tn+1. Since the scheme
results in a central formulation, damping terms for the high frequency damping and
for shock waves must be added. This can be performed for instance in a third step.
Taking the variables Un+1

i from the corrector step as temporary variable ˜̃Ui, the third
step can be formulated as:

3. Step (Damping):

Un+1
i =

˜̃
Ui − D(4) (

˜̃
U) + D(2) (

˜̃
U)

The damping fourth and second order damping terms are equal to the above defined
terms.
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According to the linear stability analysis the scheme is stable for

C = (|u|+ a) · ∆t

∆x
≤ 1

in practice values for C a little smaller than 1 are used.
Without changes the scheme can also be applied to multi dimensional problems, by adding
the fluxes and damping terms in the other coordinate directions correspondingly.

The Mac Cormack scheme is an effective and simple scheme for unsteady problems. A
disadvantage is given in regard of steady solutions, since in this scheme the time discretiza-
tion and space discretization is coupled, such that the latter also depends on the time step.
Inserting the predictor step in the corrector step and assuming constant Jacobian matrices
A, one obtains approximatively the one step Lax-Wendroff scheme:

Un+1 − Un

∆t
+
Fi+1 − Fi−1

2∆x
− ∆t

2
A
Fi−1 − 2Fi + Fi+1

∆x2
= 0

As one can easily verify, the steady solution, i.e. if Un+1
i = Un

i , still depends on the time
step ∆t. This can result in accuracy problems for steady solutions.

Runge-Kutta time stepping schemes

The Runge-Kutta time stepping scheme is at the moment the perhaps most often applied
explicit scheme for the solution of the conservation equations of compressible fluids. One
of the first applications of this method for the Euler equations was published in:
A. Jameson, W. Schmidt, E. Turkel: Numerical Solutions of the Euler Equations by Finite
Volume Methods Using Runge-Kutta Time-Stepping Schemes. AIAA paper AIAA-81-1259,
1981

With some modifications the Runge-Kutta scheme is widely applicable. Some appli-
cations from the literature are known for which the one and multi dimensional Euler and
Navier-Stokes equations with central upwind discretization and for steady and also time
accurate solutions were solved. The method has already been presented in chapter 6 for
scalar equations. For equation systems it can be applied in equal fashion. Starting point
is the conservative difference scheme, for which a solution Un+1 at time tn+1 as a function
of the initial condition Un is wanted.

Un+1
i − Un

i

∆t
+
F̃i+1/2 − F̃i−1/2

∆x
= 0

The F̃i±1/2 are the central or upwind discretized numerical fluxes. The residual vector
Resi(U) is introduced for abbreviation. It represents the steady space operators of the single
equations and can also consist of multi dimensional components. For the one dimensional
case the residual is defined as:

Resi(U) =
F̃i+1/2 − F̃i−1/2

∆x
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Thus the difference equations that needs to be solved are:

Un+1
i − Un

i

∆t
= −Resi(U)

In analogy to the original Runge-Kutta scheme for ordinary differential equations, the
integration for a time step ∆t is performed in several explicit sub steps, marked with the
step index k. Because of the minimal memory requirement, the following N–step scheme for
the solution of partial differential equations in fluid dynamics has been proven successful:

U
(0)
i = Un

i

U
(1)
i = U

(0)
i − α1 · ∆t ·Resi (U (0))...

U
(k−1)
i = U

(0)
i − αk−1 · ∆t ·Resi (U (k−2))

U
(k)
i = U

(0)
i − αk · ∆t ·Resi (U (k−1))...

Un+1
i = U

(N)
i

The number of steps N is normally chosen between 3 and 5. The coefficients (αk ≤ 1) can
be determined such that, the truncation error in time becomes minimal, i.e. the largest
time accuracy or order O(∆tN) is reached. One obtains from a Taylor series expansion:

αk =
1

N − k + 1
with k = 1, 2, · · ·N

Another possibility is to optimize the coefficients for maximum stable time steps. The
theoretically upper bound for stability is:

Cmax = min
i

(
(|ui|+ a)

∆t

∆xi

)
= N − 1

A typical set of coefficients for a central five step scheme of O(∆t2), proven to be suitable
is:

αk = 0.25 , 0.166 , 0.375 , 0.5 , 1 for Cmax = 4
and for upwind differences

αk = .059 , .14 , .273 , .5 , 1. for Cmax = 3.5
Using the presented algorithm and suitable coefficients, the explicit solution for time accu-
rate as well as asymptotical steady problems can be obtained.

The limitation of the time step ∆t or the Courant number C, respectively is ineffective
for steady problems, because of numerical instabilities. Since no time accuracy of the
scheme is demanded in this case, the artificial acceleration of the scheme can be used to
increase the convergence speed toward the steady solution. Two important possibilities will
be presented in the following:

The application of local time steps allows for a given Courant number the maximum pos-
sible time step for each grid point. In the time accurate calculation a single time step is
chosen, i.e. the smallest time step in the whole domain of integration because of stability
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considerations. In contrast to this with local time stepping the time step varies between
the grid points. The value of the time steps is determined from the local value of the spatial
step and the maximum eigenvalue:

∆ti = C
∆xi

(|u|+ a)i

The solution in the unsteady state is no longer consistent in time. However, the steady
solution Res(U) = 0 is not influenced by the time step, since U (k) approaches Un+1 in the
limit. The local time stepping allows the largest possible numerical propagation velocity
on each grid point which leads to an acceleration of the calculation for steady solutions by
using the local stability bounds of an explicit scheme. The advantage is especially large, if
the space step size vary significantly.

For steady solutions, the implicit residual smoothing permits a higher Courant number
C than the one dictated by stability considerations, i.e. Cexpl. To achieve this, the residual
Res(U (k)), from the k th Runge-Kutta step, is implicitly averaged, such that the numeri-
cal propagation speed is increased and the local distribution of the residual is smoothed.
A straightforward smoothing rule is given by the implicit formulated diffusion equation
(Fourier equation) with the smoothed residual R̄esk as variable.

R̄es
k
i − ε

(
R̄es

k
i−1 − 2R̄es

k
i + R̄es

k
i+1

)
= Res

(k−1)
i

The new value Uk in the k th step of the Runge-Kutta scheme is calculated from the
smoothed residual R̄eski , i.e.

U
(k)
i = U

(0)
i − αk · ∆t · R̄eski

Using the following abbreviation: δxxR̄es
k
i = (R̄es

k
i−1−2R̄es

k
i +R̄es

k
i+1) the k th smoothing

and Runge-Kutta step can be combined as:

(1− ε δxx) ∆̄U
k

= −αk · ∆t ·Resi (U (k−1))

U
(k)
i = U

(0)
i + ∆̄U

k
i

The solution of the scalar, tri diagonal system is performed with the Thomas algorithm
and requires for equation systems a relatively small amount of computation time.
The smoothing parameter ε is chosen according to numerical reasons, i.e. such that the
faster convergence towards a steady state is obtained. A stability analysis of the Runge-
Kutta method with residual smoothing results in unlimited stability for:

ε ≥ 1

4

[
(
C

Cexpl
)2 − 1

]
Good convergence rates in practical calculations were achieved for Courant numbers around
two to three times bigger than their explicit value Cexpl and by using values for ε from the
above relation, when applying the equality sign.
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Annotation: For multi dimensional problems, smoothing is applied in each direction, e.g.
for 2-D:

(1− ε δxx) ¯̄∆Uk = −αk · ∆t ·Resi (U (k−1))

(1− ε δyy) ∆̄U
k

= ¯̄∆Uk

U
(k)
i = U

(0)
i + ¯∆Uki

Implicit schemes for the Euler equations

For implicit schemes the variables of the space differences become unknowns at the time
level tn+1. This results in a equation system, coupled in the position space. The solu-
tion matrix can be solved directly with an elimination algorithm or approximated by an
iteration. The advantage of the implicit formulation is the generally unlimited numerical
stability which allows the choice of bigger time steps. For most cases the implicit scheme
of the non linear conservation equations is essentially more robust for heavy fluctuations
of the flow field, e.g. strong shock waves in hypersonic flows. On the other hand the es-
sentially more complex algorithm and the bigger computation effort per time step for the
solution of the equation system is a big drawback.
The method for the development of an implicit scheme has already been presented in the
preceeding chapter for scalar model equations. The implicit solution of the system of the
conservative Euler equations can be carried out analogous. In contrast to the scalar equa-
tions, a coupling of the variables U occurs, between the single equations of the system and
in addition to the coupling in position space. This coupling occurs because of the depen-
dency of the fluxes F = F (U) on the conservative variable U . For an implicit scheme of
the Euler equations the dependency of the flux F on the variables U is considered in the
Jacobian matrices of the fluxes. The development of implicit schemes for such systems will
be shown in the following.
For the conservative discretized Euler equations Ut+Fx the approach of an implicit scheme
with backward differences O(∆t) in time is:

Un+1
i − Un

i

∆t
+
F̃ n+1
i+1/2 − F̃ n+1

i−1/2

∆x
= 0

The numerical flux F̃ n+1
i±1/2 = F̃ (Un+1

i±1/2) is a function of the unknown Un+1 of the adjacent
grid points. The numerical flux can be defined by central upwind formulation, including
damping terms. To present a scheme of general formulation, the residual vector Res (U) is
defined which represents the sum of all space derivatives. For the above scheme the residual
is:

Res (U) =
F̃i+1/2 − F̃i−1/2

∆x

With this the implicit scheme can be written as follows:

Un+1
i − Un

i

∆t
+ Res (Un+1) = 0
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To present the dependence of the residual on Un+1, it will be expanded in a Taylor series
for the time tn.

Res (Un+1) = Res (Un) +
∂Res(Un)

∂t
∆t + · · ·

The time derivative of the residual can be presented as temporal development of the variable
U :

∂Res(U)

∂t
∆t =

∂Res(U)

∂U
· ∂U
∂t

∆t =
∂Res(U)

∂U
(Un+1 − Un) + · · ·

Introducing the definition of the correction variables ∆Un ≡ Un+1 − Un one obtains the
implicit scheme:

∆Un
i

∆t
+
∂Res(U)

∂U
·∆U = −Res(Un)

The Jacobian matrix ∂Res(U)
∂U

describes the dependence of the residual on the conservative
variable U on the single grid points. According to the definition of the residual the matrix
is composed of components of the numerical fluxes.

∂Res(U)

∂U
∆Un =

1

∆x

(
∂F̃i+1/2

∂U
∆Un

i+1/2 −
∂F̃i−1/2

∂U
∆Un

i−1/2

)

The components ∂F̃
∂U

correspond to the known Jacobian matrices of the fluxes for the conser-
vative variables. In the following the derivation of an implicit method for the conservative
Euler equations will be shown with a central scheme:

Example:
The numerical flux for a central scheme is:

F̃i+1/2 =
1

2
(F (Ui) + F (Ui+1))

The dependence of the numerical flux F̃i+1/2 = F̃ (Ui, Ui+1) on U thus results in

∂F̃i+1/2

∂U
∆Un =

∂F̃ (Ui, Ui+1)

∂(Ui, Ui+1)
∆Un =

1

2

(
∂F (Ui)

∂Ui
∆Un

i +
∂F (Ui+1)

∂Ui+1

∆Un
i+1

)
=

1

2

(
Ai ·∆Un

i + Ai+1 ·∆Un
i+1

)
Using an analogous expansion for F̃i−1/2 and by application of the residual definition
Res(U) = 1

2∆x
(F (Ui+1) − F (Ui−1)) the following implicit scheme is obtained:

∆Un
i

∆t
+

1

2∆x

(
Ai+1 ·∆Un

i+1 − Ai−1 ·∆Un
i−1

)
= −Res(Un)

Sorting the unknowns ∆U , yields a block tri-diagonal equation system of the form:

ai ·∆Un
i−1 + bi ·∆Un

i + ci ·∆Un
i+1 = −Res(Un)
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where ai = − 1

2∆x
Ai−1 , bi =

1

∆t
· I , ci =

1

2∆x
Ai+1

This equation system is similar to the one obtained for scalar equations with the difference
that the coefficients a, b, c are block matrices of the rank of the Jacobian matrices A (in
this case 3x3 matrices). The solution of the equation system is performed by Gaussian
elimination (Thomas algorithm). Inserting the recursion into the scheme

∆Un
i = Ei ·∆Un

i+1 + ~Fi

yields the recursion matrix Ei and the vector ~Fi

Ei = (aiEi−1 + bi)
−1 · Ci and F i = (aiEi−1 + bi)

−1
(
−Res(Un) − ai · F i−1

)
The coefficients for i = 2, 3, · · · , imax can be determined for the boundary conditions at
i = 1. The new variables are calculated with the boundary conditions at i = imax:

∆Un
i = Ei ·∆Ui+1 + ~Fi

Un+1
i = Un

i + ∆Un
i

This example demonstrates the principle of the solution of an implicit scheme for systems
of differential equations.
The application of higher order upwind schemes or central schemes with damping gen-
erally leads to a position operator which is constructed from five grid points, i.e. with
Ui−2, Ui−1, Ui, Ui+1, Ui+2. With this the residual becomes

Res (U) = Res (Ui−2, Ui−1, Ui, Ui+1, Ui+2)

In analogy to the preceeding derivation an equation system emerges. This equation system
is coupled by five variables and is known as a penta-diagonal system:

di ∆Ui−2 + ai ∆Ui−1 + bi ∆Ui + ci ∆Ui+1 + ei ∆Ui+2 = −Res(Un)

The solution of such a system can also be performed by Gaussian elimination and should
be carried out for time accurate calculations. But the effort is higher than for a tri-diagonal
system.
If time accuracy is not required, like e.g. for steady solutions, one therefore often simplifies
the implicit operator (= the lefthand side of the difference equation). This is a valid
measure, since the steady solution Res (Un) = 0 is obtained if the correction variables
∆Un diminish. Thus, the steady solution becomes independent from the way in which
the implicit scheme converges towards ∆Un = 0. An often applied approximation for
the implicit operator is to formulate its space differences with a first order scheme, while
approximating the space operators in the residual Res(Un) which define the accuracy of
the solution, with higher order differences. The first order space operators for the lefthand
side are only a function of the variables located at i−1 , i , i+1 which results in a simplified
tri-diagonal equation system of the following form

ai ·∆Un
i−1 + bi ·∆Un

i + ci ·∆Un
i+1 = −Res (Ui−2, Ui−1, Ui, Ui+1, Ui+2, )
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An example for this is the above presented implicit scheme for a central difference with
application of the damping terms D(2) and D(4), as described above. The numerical flux
for the residual Res(U) is:

F̃i+1/2 =
1

2
(F (Ui) + F (Ui+1)) + d(4)(U) + d(2)(U)

Since the damping term D(4) = d
(4)
i+1/2 − d

(4)
i−1/2 includes the values on five grid points, the

damping terms D(4) and D(2) in the implicit component are replaced by an approximated
term D

(2)
I . This leads to a simplified flux for the creation of the implicit operator:

(F̃i+1/2)impl =
1

2

(
F (Ui) + F (Ui+1) − εI

1

∆t
(Ui+1 − Ui)

)
The Jacobian matrices become:

∂F̃i+1/2

∂U
∆U =

1

2

(
Ai ·∆Ui + Ai+1 ·∆Ui+1

)
− εI/∆t (∆Ui+1 − ∆Ui)

The upwind schemes are treated correspondingly. For them the residual is formulated with
a high order upwind discretization, while the construction of the implicit operator is per-
formed with the corresponding first order scheme.

An extension of the implicit scheme for the Euler equations to multiple dimensions is
most often performed approximatively, as described for the scalar equations. An impor-
tant method in this respect is the method of approximated factorization and the iteration
schemes applying the Gauss-Seidel point or line iteration. For details please refer to the
specialized literature.
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2.4.4 Simulation of a one dimensional flow problem – shock tube
flow

An often used test case for the presentation and validation of different solution schemes
for the Euler equations is the numerical calculation of the flow in a shock tube. This test
case involves essential flow phenomena of compressible, inviscid flows like shock waves,
discontinuities and expansion waves.

The physical problem includes the flow and the wave phenomena in a shock tube. In
a straight tube, separated by a membrane, the lefthand part is filled with gas of state (5)
while the righthand part is filled with gas of state (1). After the burst of the membrane
a shock wave S propagates in the low pressure part, followed by the contact discontinuity
K which forms the separation surface between the to gases in the high and low pressure
parts. The pressure in the high pressure region is reduced by an unsteady expansion wave.
For the following example it is assumed that equal gases are chosen for the high and low
pressure parts.
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end

The analytical calculation is performed for the
given states (1) and (5) with the coupling of the
states across the propagating shock wave, across
the discontinuity and across the expansion wave
until the high pressure region.
For the shock propagating with velocity Vs the
jumping conditions [H − Vs U ]21 = 0 are valid.
After rearrangement of the jumping conditions
one obtains state(2) as a function of the yet un-
known shock Mach number Ms = vs

a1
(Rankine-

Hugoniot relation). E.g.:

p2

p1
=

2κM2
s − (κ − 1)

κ + 1
,

ρ2

ρ1
=

(κ + 1)M2
s

2 + (κ − 1)M2
s

,
u2

a1
=

2 (M2
s − 1)

(κ + 1)Ms

The contact surface moves as a material bound-
ary with the flow velocity u2. The jumping con-
dition [H − u2 U ]32 = 0 leads to constant pres-
sure and velocity across the contact surface, i.e.
p3 = p2 and u3 = u2. All other properties
change across the discontinuity depending on
the initial state.
From state (3) behind the contact surface until
state (5) in the high pressure part the flow is
isentrop and the total enthalpies H5 and H3 are
equal, i.e.:

H5 = cp T5 = H3 = cp T3 + u2
3/2 ,

p5

p3

=

(
T5

T3

) κ
κ−1

=

(
ρ3

ρ5

)κ−1
κ
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By coupling of the relations the shock Mach number from the states (1) to (5) can be
calculated. For equal gases (κ5 = κ1 = κ) one obtains the shock Mach number Ms by
iteration:

p5

p1

=

(
1 +

2κ

κ+ 1
(M2

s − 1)

) / (
1 − a1

a5

· M
2
s − 1

κ+1
κ−1

Ms

) 2κ
κ−1

With this the states (2) and (3) can completely be calculated.
Inside the unsteady expansion wave, i.e. state (4), isentropy is conserved, while the equality
of the total enthalpies is not conserved. The state in the expansion wave (4) is calculated
according to the method of characteristics. The characteristic solution (see chapter 7) is:

dp ± ρ a du = 0 für
dx

dt
= u ± a

By application of the isentropy relation dp = a2 dρ and the equation for a perfect gas
p = ρRT these solutions can be integrated. One obtains:

2

κ− 1
a ± u = const für

dx

dt
= u ± a

The characteristics dx
dt

= u− a describe straight lines with of the equation x− (u− a)t = 0,
coming from the membrane origin (t = 0, x = 0). On these lines 2

κ−1
(a− u) = const holds.

The lines intersect with characteristics of dx
dt

= u+ a which emerge from the lefthand state
(5). For them the following applies:

2

κ− 1
a + u =

2

κ− 1
· a5

From the equation of a straight line x− (u− a) · t = 0 one therefore obtains the states in
the expansion wave, e.g.

u

a5

=
2

κ+ 1

(
1 +

x

a5 t

)
,

a

a5

=
κ− 1

κ+ 1

(
1 +

x

a5 t

)
The other gas properties can be determined from the isentropy relation. The limiting
characteristics of the expansion wave are x−a5t = 0 on the lefthand side and x−(u3−a3)t =
0 on the righthand side.

The numerical solution is performed for initial states, taken from a test case formulated in
the literature:

Yee, H. C.: A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods.
Lecture Series 1989-04, von Karman Institute for Fluid Dynamics, Rhode-St-Genese, Bel-
gium, (1989).

The following initial conditions for t = 0 are given:

x ≤ 0 : u5 = 0 ρ5 = 1, 4 kg
m3 T5 = 2438 K p5 = 9, 88 · 105 N

m2

x > 0 u1 = 0 ρ1 = 0, 14 kg
m3 T1 = 2452 K p1 = 9, 93 · 104 N

m2
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The domain of integration is −7m ≤ x ≤ +7m. The numerical discretization is performed
with imax = 141 grid points. This yields a constant step size ∆x = 0, 1m. The presentation
of the results is done after a time tend = 4 · 10−3sec. At this time the shock and expansion
wave still reside inside the domain of integration.
Fixed walls are given as boundary conditions on the left and righthand side. The condition
for a fixed wall is u = 0. By application of the momentum equations this yields px = 0
which is numerically approximated by substitution of the wall value with the next inner
point.
The time step ∆t is calculated from the Courant number C, which must be defined for the
different schemes.

∆t = C ·∆x
/

max
i
|λ| where max

i
|λ| = max

i
( |u| + a)

The solution of the Euler equations is carried out with various, explicit schemes to demon-
strate some typical solution behaviors.

The following figures present results from the numerical solution of the shock tube prob-
lem with the Euler equations, as described above. The circles correspond to the numerical
solution at the single grid points, while the solid line presents the exact solution along the
variable length x at the given time tend, after the membrane burst.
The figures 2.4.1 -a) to d) show respectively, density, pressure, Mach number and velocity
for the shock tube problem. With these properties the typical wave phenomena like expan-
sion waves, contact surfaces and shock waves can be recognized. It can also be observed
that the pressure and velocity are constant across the contact surface. The numerical so-
lution was in this case obtained with a Runge-Kutta scheme applying a Courant number
C = 1.5. The space discretization has been performed with a Flux-Vector splitting scheme
with limiter function according to van Albada and van Leer, in the above described fashion.
The figures 2.4.2 a) to d) show the course of the density in order to express the solution
qualities of different methods.
Figure 2.4.2 a) shows the solution according to the Lax-Keller scheme as an example for
a fist order accurate scheme, O(∆x,∆t) and C = 1. The effects of an excessive numerical
viscosity, leading to a smearing out of the discontinuities can be clearly seen from its course.
In the figures 2.4.2 b) and c) the (central) Mac Cormack scheme was applied with C = 0.8.
The scheme displays very strong oscillations without damping, it even gets instable in the
given case. Applying a weak shock damping term ε(2) = 0.1 in figure b), the solution
remains stable, but still displays noticeable oscillations. Stronger dampers ε(2) = 0.25 and
additional high frequency damping ε(4) = 0.05 in figure c) result in a smoother solution, but
still not free of oscillations. These courses present the typical behavior of central schemes
which require thorough treatment of the damping terms if discontinuities are involved.
In figure d) the solution of the method applying Flux-Vector splitting with limiter function
is presented once more for a comparison of the two methods. The course of the solution
is smooth and captures the discontinuities very accurately. The good resolution of discon-
tinuities is in general a typical quality for upwind schemes with TVD behavior, like the
presented examples for Flux-Vector and Flux-Difference splitting. However, it should be
noted that the computational effort of such schemes is essentially higher than for central
schemes.
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Figure 2.4.1: Solution of the Euler equations for the shock tube problem obtained with the
Runge-Kutta flux-vector splitting scheme. Course of density, pressure, velocity, and Mach
number along the x-coordinate at a time tend.
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(d) RK flux-vector splitting
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Figure 2.4.2: Solution of the Euler equations for the shock tube problem. Course of the
density along the x-coordinate at a time tend. a) Lax-Keller scheme with C = 1. b)
MacCormack scheme with C = 0.8, ε(2) = 0.1 c) MacCormack scheme with C = 0.8,
ε(2) = 0.25, ε(4) = 0.05 d) Runge-Kutta scheme with flux-vector splitting and van Albada
limiter e) Runge-Kutta scheme with Advection Upstream Splitting Method (AUSM) f)
Dual-time stepping scheme with artificial time derivative.
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2.4.5 Space discretization in multiple dimensions

The numerical solution of the one dimensional Euler equations as treated above is the
starting point for the solution of the equations in two and three dimensions. In most
schemes a quasi one dimensional flux discretization is formulated for each coordinate di-
rection. Therefore, one obtains a scheme which in principle consists of the superposition of
one dimensional discretizations.
The following considerations are limited to the two dimensional physical space, to keep
matters simple. The extension to three dimensions, can in general be achieved in an anal-
ogous way.
The Euler equations in general integral or divergence formulation are:∫

τ

Ut dτ +

∮
A

~H · ~n dA = 0 resp.. Ut + ∇ · ~H = 0

A two dimensional Cartesian coordinate system x, y, t is used as reference system. With
the cartesian components of the flux vector ~H =

(
F
G

)
, the nabla operator ∇ =

( ∂
∂x
∂
∂y

)
and

the vector of the surface normal ~n dA =
(
dy
−dx
)
one obtains the conservation equations in

integral, respectively in divergence formulation:∫
τ

Ut dτ +

∮
A

F · dy −
∮
A

G · dx = 0 respectively Ut + Fx + Gy = 0

Both forms are a starting point of the conservative discretization of the Euler equations.
The formulation of the conservation of mass, momentum and energy in the discrete space
is performed with a small control volume τ = 0(∆x ·∆y) of the computational grid.

The definition of a control volume for a given grid is an essential step in the conservative
space discretization. In multiple dimensions this can be done in various ways. The most
important configurations for the control volume are:

node centered cell centered cell-vertex
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In the node-centered scheme the variables U and the space coordinates (x, y) are defined at
the same grid point. The boundary of the control volume is chosen in the middle between
two neighboring points.
In the cell centered scheme only the space coordinates are defined at the grid points. The
variables U are assumed in the center of the cell defined by four grid points. Therefore, the
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indexing of the variables Ui,j and the geometry xi,j, yi,j doesn’t apply for the same place.
The cell-vertex scheme is in principle composed from four control volumes for the calcula-
tion of the values Ui,j in the central point xi,j, yi,j. Variables and coordinates are defined
on the same grid.
All three configurations are commonly applied in the literature. They differ in the formu-
lation of the numerical flux and the boundary conditions, without any essential advantages
or disadvantages of one of the configurations. The different control volumes can be formu-
lated in Cartesian as well as in general curved coordinates. (Similar configurations can be
applied for triangulated grids with triangle shaped cells. But the formulation for this case
leaves the scope of this course.) For the following considerations the node-centered scheme
of the control volume serves as an example.

Space discretization in two dimensions on Cartesian grids

For the discretization in a Cartesian space, one
chooses a grid who’s points are oriented along
the axis directions. The following index notation
for the grid points is used: i = 1, 2, · · · , imax
for the x-direction and j = 1, 2, · · · , jmax for the
y-direction. The step size between the grid points
are no longer assumed to be constant.

The discretization with the integral form of the
Euler equations offers a straightforward physical
interpretation of the discretization. The conser-
vation laws are directly applied on a small, finite
value τ , therefore this method is referred to as the
“Finite-Volume Method”.
For the formulation of the temporal change of the
conservative variables U in the volume τ one con-
siders the variables Ui,j as spatially averaged across
τ . For the control volume τABCD one obtains:∫

τ

Ut dτ → ∆Ui, j
∆t

· τABCD
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i−1,j

A

BC

D

n
i,j

i,j

The temporal change is in equilibrium with the fluxes normal to the surface of τ . The
fluxes across a cell boundary of the control volume are assumed to be piecewise constant.
Positive signs are determined according to the outward facing surface normal. For a given
mathematically positive turn direction for the four sides of the control volume the flux
integral yields: ∮

~H · n dA ≈ ĤAB + ĤBC + ĤCD + ĤDA

This relation can be simplified for a Cartesian element, since then the surface normal always
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coincides with the coordinate direction.∮
A

F dy −
∮
A

Gdx ≈ FAB ∆yAB + FCD ∆yCD − GBC ∆xBC − GDA ∆xDA

According to the turn direction it is:

∆yAB = yB − yA , ∆xBC = xC − xB , · · ·

The discrete integral form of the Euler equations therefore becomes:

∆Ui,j
∆t

· τABCD + FAB ∆yAB + FCD ∆yCD − GBC ∆xBC − GDA ∆xDA = 0

For the formulation of an algorithm it is in general beneficial to introduce an indexing with
i, j. This yields:

∆xi =
xi+1 − xi−1

2
= ∆xDA = −∆xBC , ∆yj =

yj+1 − yj−1

2
= ∆yAB = −∆yCD

τi, j = τABCD = ∆xi ·∆yj

F̃i+1/2, j = FAB , F̃i−1/2, j = FCD

G̃i+1/2, j = GBC , G̃i, j−1/2 = GDA

With these relations one obtains the following formulation for the integral form:

∆Ui,j
∆t

∆xi ·∆yj +
(
F̃i+1/2, j − F̃i−1/2, j

)
∆yj +

(
G̃i, j+1/2 − G̃i, j−1/2

)
∆xi = 0

For the discretization of the divergence form the
space derivatives are replaced by differences of the
numerical fluxes F̃i±1/2, j and G̃i, j±1/2 at the cell
walls. These fluxes are assumed to be known, for
the time being. This yields the discretized form:

∆Ui,j
∆t

+
F̃i+1/2, j − F̃i−1/2, j

∆xi
+
G̃i, j+1/2 − G̃i, j−1/2

∆yj
= 0
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i,j

Fi+1/2,jFi−1/2,j

This method is often referred to as “Finite Difference Method” because of the direct differ-
ence formulation.
The same difference formulation can be obtained from the above discretized integral form
by division with τi, j = ∆xi ·∆yj Therefore, the discretized, two dimensional Euler equations
have the same form, like it was derived for the one dimensional equation. In contrast to
this the numerical flux functions in x-direction and y-direction, i.e. F̃i±1/2, j and G̃i, j±1/2,
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respectively must be defined. This is performed in analogy to the one dimensional case by
using interpolation polynomials in the concerning direction.
For instance the central discretized flux with artificial damping results in:

F̃i+1/2, j = F (
Ui,j + Ui+1,j

2
) + d(4)

x (U)− d(2)
x (U)

G̃i, j+1/2 = G (
Ui,j + Ui,j+1

2
) + d(4)

y (U)− d(2)
y (U)

The damping terms dx(U) and dy(U) are replaced with second and fourth order differences
in x- respectively in y-direction.

Space discretization on curved grids
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Computational fluid dynamics applications most often require the calculation of a flow
around curved surfaces like e.g. wing profiles, turbine blades or fuselages. When Carte-
sian grids are used the surface contours lie somewhere between the grid points and the
discretization of the boundary conditions requires interpolation. This often leads to errors.
Therefore, one usually applies body fitted grids. With this a grid line, or a grid surface in
the three dimensional case, becomes identical to the body contour. Along such a grid line
the boundary conditions can be formulated unambiguously . This contour fitted configura-
tion of the grid leads to a curved grid configuration inside the domain of integration which
is in general not orthogonal.

The principle method for the discretization of the conservation equations in such a body
fitted grid has already been described for the conservative discretization on one and two
dimensional, Cartesian grids. The grid generation, i.e. the distribution of grid points in

the domain of integration is not trivial compared to Cartesian grids. This is because the
increased number of degrees of freedom for the grid points which results from the general
curved configuration. An essential principle in this respect is that the discretization error
for the conservation equations and the boundary conditions is kept small. Some aspects
for the configuration of the grid are:

• Given boundary contours must be captured geometrically correct.

• The grid should be more dense in areas of strong changes of the unknowns, e.g. at
the edge or close to a shock wave.
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• The distortion of the grid cells should not be too strong, since the angle between
to cell boundaries also has an impact on the discretization error. Nearly orthogonal
grids are best in this respect.

• Some geometrical configurations, especially in three dimensions, can include grid
singularities. A typical example for this phenomenon is the origin (r = 0) of a
grid formulated in cylindrical coordinates. Close to these singularities irregular cells
occur which lead to large discretization errors. Such cells must be discretized in a
special way, or they can often be circumvented or reduced by applying a different grid
configuration.

The generation of body fitted grids can be performed with various methods. In simple
cases the point distribution can be described with algebraic relations, e.g. the definition of
a function for a grid line between two boundaries. For more complex contours special grid
generation algorithms are applied which for instance construct the point coordinates from
the solution of elliptic equations. The presentation of such grid generation schemes can be
found in the literature.
Thompson, J.F., Warsi, Z., Mastin, C.W.: Numerical Grid Generation, Foundations and
Applications. Pub. North-Holland, (1985).
Weatherill, N.P.: Mesh Generation in Computational Fluid Dynamics. VKI Lecture Se-
ries on Comp. Fluid Dynamics, von Karman Institute for Fluid Dynamics, Rhode-Saint-
Genese, March 1989, (1989).

For the discretization on curved grids a grid is as-
sumed who’s grid line directions are defined by
new coordinates, e.g. in this case ξ and η and
the indexing ξi = i · ∆ξ and ηj = j · ∆η. The
conservative discretization on such a grid requires
the definition of a control volume τ around a grid
point (i, j). Various configurations have already
been introduced. For the following discussion the
node centered configuration of the control volume
is assumed. In this configuration the coordinates
xi,j , yi,j and the variables Ui,j are defined on the
same grid points. The control volume τ is formed
in the middle between the point i, j and the neigh-
boring points.
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The discretization on curved grids can be performed starting from the integral form as
well as starting from the divergence form. Both methods are commonly found in the
literature. The correct conservative formulation of these forms lead to the same difference
approximation.
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The discretization with the integral form of
the Euler equations offers a straightforward
physical interpretation of the discretization.
The conservation laws are directly applied
on a small, finite volume τ , therefore this
method is referred to as the “Finite-Volume
Method”.
Starting point are the integral conservation
equations∫

τ

Ut dτ +

∮
A

F · dy −
∮
A

G · dx = 0

The control volume τ = τABCD is defined by
the cornering points ABCD. For the node
centered configuration the coordinates of the
cell corner points are obtained as arithmetic
mean values of the coordinates of the sur-
rounding grid points, e.g.

xB = (xi,j + xi+1,j + xi+1,j+1 + xi,j+1)/4

yB = (yi,j + yi+1,j + yi+1,j+1 + yi,j+1)/4

n
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A

B
C

D

i,j

n

H
^

AB    y∆

AB    x∆

AB

A

B

F

G

The control volume (= surface in the two dimensional case) τABCD, can be determined with
the scalar product of the space vectors ~r =

(
x
y

)
, e.g. in the form:

τABCD =
1

2
(~rB − ~rD)× (~rC − ~rA) =

1

2
((xB − xD) (yC − yA)− (xC − xA) (yB − yD))

The positive defined normal vectors of a cell wall are facing outwards. For the estimation
of the flux integral a mathematically positive turn direction is assumed.

The temporal change of the conservative properties in the volume τABCD becomes:∫
τ

Ut dτ → ∆Ui, j
∆t

· τABCD

The temporal change is in equilibrium with the fluxes normal to the surface of τ . In general
form the flux integral for a given mathematically positive turn direction yields:

∮
~H · n dA ≈

4∑
k=1

(H · ~n∆A)k = ĤAB + ĤBC + ĤCD + ĤDA

The fluxes Ĥk are the normal projection of the physical fluxes, multiplied with the surface
element ∆A of each cell wall. They are obtained by the Cartesian components of the flux
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~H =
(
F
G

)
and the surface normal vector ~n∆A =

(
∆y
−∆x

)
as:

ĤAB = FAB ∆yAB −GAB ∆xAB , ĤBC = FBC ∆yBC −GBC ∆xBC etc.

According to the turn direction it is:

∆yAB = yB − yA , ∆xBC = xC − xB , · · ·

Care must be taken that the sign convention is fixed by the outward facing surface nor-
mal and the mathematically positive turn direction. The flux components, e.g. FAB, GAB

are determined with interpolation polynomials between the neighboring points, like it has
already been described.

The discretized Euler equations for the point (i, j) with the control volume τABCD thus

become: ∆Ui, j
∆t

· τABCD + ĤAB + ĤBC + ĤCD + ĤDA = 0

The discretization of the divergence form (Finite Difference Method) first requires the trans-
formation of the equations from Cartesian coordinates (x, y, t)

Ut + Fx + Gy = 0

into the new curved coordinate system (ξ, η, τ). When the physical plane (x, y) is dis-
played in the new coordinates (ξ, η), the originally curved domain of integration is given
as rectangular domain with “equidistant” steps ∆ξ and ∆η. In the transformed form the
discretization can be performed for a given control volume.

x

y

ξ

η

����������������������������������������������������

η
ξ

(i,j) (i,j)

For the transformation of the equations it is assumed that each point (x, y, t) in physical
space is uniquely represented by a point in the transformed space (ξ, η, τ). For a grid, fixed
in time this yields:

x = x (ξ, η) , y = y (ξ, η) , t = τ

The derivatives of a function f(x, y, t) in the new coordinates can be determined with the
chain rule:

fξ = fx xξ + fy yξ

fη = fx xη + fy yη

fτ = ft
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This yields the derivatives in Cartesian coordinates:

fx =
1

J
(+yη fξ − yξ fη)

fy =
1

J
(−xη fξ + xξ fη)

J = xξ yη − xη yξ

Formally, this transformation can also be performed with functional (Jacobian) determi-
nants. In this case one obtains:

J =
∂(x, y)

∂(ξ, η)
=

∣∣∣∣ xξ yξ
xη yη

∣∣∣∣ = xξyη − xηyξ

fx =
1

J

∂(f, y)

∂(ξ, η)
=

1

J

∣∣∣∣ fξ yξ
fη yη

∣∣∣∣ =
1

J
(yηfξ − yξfη) fy =

1

J

∂(x, f)

∂(ξ, η)
=

1

J
(−xηfξ + xξfη)

If the Cartesian derivatives in the divergence form are replaced with these relations, one
obtains:

Ut · J + (yη Fξ − yξ Fη) + (−xη Gξ + xξ Gη) = 0

The equations in this form are not conservative. By rearrangement of the terms, like e.g.

(yη F )ξ − (yξ F )η = yη Fξ − yξ Fη + F (yηξ − yξη)︸ ︷︷ ︸
0

the divergence form can be regained in the new coordinates. Therefore, the transformed
divergence form of the Euler equations becomes:

Ut · J + (yη F − xη G)ξ + (− yξ F + xξ G)η = 0

The expressions in brackets are the contra variant flux components, multiplied with the
surface which correspond to the fluxes normal to the cell walls. For these fluxes the abbre-
viations F̂ and Ĝ are introduced.

Ut · J + F̂ξ + Ĝη = 0

The discretization of the equations is carried out in the transformed space (ξ, η) on an
equidistant grid with ξ = i∆ξ and η = j∆η. Using the definition of the numerical fluxes
F̃i±1/2,j and G̃i,j±1/2 which represent an approximation of the contra variant fluxes F̂ and Ĝ
a formulation is obtained in analogy to the one and two dimensional, Cartesian examples.

∆Ui,j
∆t

· J +
F̃i+1/2,j − F̃i−1/2,j

∆ξ
+
G̃i,j+1/2 − G̃i,j−1/2

∆η
= 0
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The numerical fluxes of a general, two dimen-
sional grid include the physical flux compo-
nents f and G and the metric terms, like xξ
and xη.

F̃i±1/2,j = (+yη F − xη G)i±1/2,j

G̃i,j±1/2 = (−xξ F + yξ G)i,j±1/2

Their geometrical meaning and discretiza-
tion becomes obvious when compared with
the discretized integral form (Finite Volume
Method). Since both cases are based on
the same control volume, both discrete forms
must yield the same results. The coordinates
(ξ, η) serve only the assignment of the direc-
tions. For a comparison ∆ξ = 1 and ∆η = 1
are therefore arbitrarily chosen.
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ξ

η

i,j

i,j+1/2G
^

i,j−1/2G
^

i+1/2,jF
^

i−1/2,jF
^

First, one recognizes that the Jacobian determinant J represents the control volume, i.e.

Ji,j = τi,j = τABCD

The cell walls AB and CD or BC andDA respectively, correspond to the positions i±1/2, j,
and i, j ± 1/2. This yields for instance:

F̃i+1/2,j = (+yη F − xη G)i+1/2,j = ĤAB = ∆yAB FAB −∆xAB GAB

Therefore, the metric coefficients (xη, yη)i+1/2,j describe the change of the coordinates
along the cell wall AB, i.e. along η for ξ = const. The numerical flux F̃i+1/2,j is the flux
multiplied with the surface normal to the cell wall AB.
In a similar way the other components can be interpreted. The sign conventions must be
taken into account. For the integral form the sign is determined by the surface normal, for
the divergence form it is determined by the positive ξ and η direction.
This completely defines the conservative discretization in a general, curved grid. The choice
of the two starting forms, the integral or the divergence form, is most often a subjective
decision. Both choices can be found in the literature. The integral formulation is often
more graphic, while the divergence formulation is mathematically more formal.

For the complete space discretization the numerical fluxes F̃i±1/2,j and G̃i,j±1/2 must
be formulated as functions of the conservative variable U at the grid points (i, j). The
formulation is performed in analogy to the one dimensional problems. The flux function is
fixed for each cell wall by a one dimensional interpolation along the coordinate crosswise
to the cell wall. Therefore, the various one dimensional approaches like central fluxes,
Flux-Vector and Flux-Difference splitting can be transfered.

Example:
As an example a central formulation of the discrete space operator Res(U) for a point (i, j)
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shall be presented. The residual Res(U) is defined as:

Res(U)i,j =
F̃i+1/2,j − F̃i−1/2,j

∆ξ
+
G̃i,j+1/2 − G̃i,j−1/2

∆η

where

F̃i±1/2,j = (+yη F − xη G)i±1/2,j

G̃i,j±1/2 = (−xξ F + yξ G)i,j±1/2

The vector of the conservation variables U and the Cartesian components F and G of the
flux vector are:

U =


ρ
ρ u
ρ v
ρE

 F =


ρ u

ρ u2 + p
ρ u v

u (ρE + p)

 G =


ρ v
ρ v u

ρ v2 + p
v (ρE + p)


A central difference is obtained by algebraic averaging of the cell wall values from the
neighboring grid values. It is e.g.:

Ui+1/2,j =
1

2
(Ui,j + Ui+1,j) , Ui,j+1/2 =

1

2
(Ui,j + Ui,j+1)

Replacing the variables in the fluxes by the averaged conservative properties yields the
numerical fluxes:

F̃i+1/2,j = +yη|i+1/2,j F (Ui+1/2,j) − xη|i+1/2,j G(Ui+1/2,j)

G̃i,j+1/2 = −xξ|i,j+1/2 F (Ui,j+1/2) + yξ|i,j+1/2G(Ui,j+1/2)

The metric coefficients (∆ξ = 1 and ∆η = 1) for a node centered control volume are:

xη|i+1/2,j = ∆xAB =
1

4
(xi,j+1 + xi+1,j+1 − xi,j−1 − xi+1,j−1)

xξ|i,j+1/2 = −∆xBC =
1

4
(xi+1,j + xi+1,j+1 − xi−1,j − xi−1,j)

The calculation of the other flux components can be performed in an analogous way. There-
fore, the residual Res(U) is completely formulated. (For simplicity, the damping terms were
omitted. They are defined for the single directions in analogy to the one dimensional case.)

The discrete Euler equations can therefore be combined as;

∆Ui,j
∆t

· J + Res(U)i,j = 0

The solution of this equation system can be performed with explicit or implicit solution
schemes which have been described for the scalar model equation i.e. for the one dimen-
sional Euler equations.
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