Computational Fluid Dynamics I

Exercise 10

1. The Laplace equation

$$
\nabla \cdot \vec{f}=0 \quad, \quad \text { with } \quad \vec{f}=\nabla u
$$

is to be solved on a curvilinear structured grid.
(a) Transform the equation for \vec{f} into curvilinear coordinates $(x, y) \rightarrow(\xi, \eta)$ (conservative form) and discretize the equation for an equidistant grid in curvilinear space.
(b) Formulate a discretization based on a finite volume method for the solution of the equation for \vec{f}. Reformulate the equation as a surface integral, define a meaningful control volume and discretize the equation.
(c) Show that the formulation obtained with the transformation in cuvilinear coordinates is identical to the finite volume formulation.

Computational Fluid Dynamics I

Exercise 10 (solution)

1. (a)

$$
\begin{array}{lr}
\nabla \cdot \vec{f}=0 & \vec{f}=\nabla u=\binom{u_{x}}{u_{y}}=\binom{g}{h} \\
(x, y) \Rightarrow(\xi, \eta) & \nabla \cdot \vec{f}=g_{x}+h_{y}=0
\end{array}
$$

with

$$
\begin{array}{r}
g_{x}=\xi_{x} g_{\xi}+\eta_{x} g_{\eta} \\
h_{y}=\xi_{y} h_{\xi}+\eta_{y} h_{\eta}
\end{array}
$$

follows for the terms in the square brackets

$$
\begin{aligned}
\xi_{x} g_{\xi}+\eta_{x} g_{\eta}+\xi_{y} h_{\xi}+\eta_{y} h_{\eta} & =0 \\
J \xi_{x} g_{\xi}+J \eta_{x} g_{\eta}+J \xi_{y} h_{\xi}+J \eta_{y} h_{\eta} & =0
\end{aligned}
$$

product rule

$$
\frac{\partial}{\partial \xi}\left(J \xi_{x} g+J \xi_{y} h\right)+\frac{\partial}{\partial \eta}\left(J \eta_{x} g+J \eta_{y} h\right)-g\left[\frac{\partial}{\partial \xi}\left(J \xi_{x}\right)+\frac{\partial}{\partial \eta}\left(J \eta_{x}\right)\right]-h\left[\frac{\partial}{\partial \xi}\left(J \xi_{y}\right)+\frac{\partial}{\partial \eta}\left(J \eta_{y}\right)\right]=0
$$

with metric terms

$$
\xi_{x}=\frac{y_{\eta}}{J} \quad \xi_{y}=-\frac{x_{\eta}}{J} \quad \eta_{x}=-\frac{y_{\xi}}{J} \quad \eta_{y}=\frac{x_{\xi}}{J}
$$

follows

$$
\begin{aligned}
\frac{\partial}{\partial \xi}\left(J \xi_{x}\right)+\frac{\partial}{\partial \eta}\left(J \eta_{x}\right) & =+\frac{\partial}{\partial \xi} y_{\eta}-\frac{\partial}{\partial \eta} y_{\xi}=0 \\
\frac{\partial}{\partial \xi}\left(J \xi_{y}\right)+\frac{\partial}{\partial \eta}\left(J \eta_{y}\right) & =-\frac{\partial}{\partial \xi} x_{\eta}+\frac{\partial}{\partial \eta} x_{\xi}=0
\end{aligned}
$$

final formulation in curvilinear coordinates

$$
\left[J\left(\xi_{x} g+\xi_{y} h\right)\right]_{\xi}+\left[J\left(\eta_{x} g+\eta_{y} h\right)\right]_{\eta}=\left(y_{\eta} g-x_{\eta} h\right)_{\xi}+\left(-y_{\xi} g+x_{\xi} h\right)_{\eta}=0
$$

discretisation
$\left(y_{\eta} g-x_{\eta} h\right)_{i+\frac{1}{2}, j}-\left(y_{\eta} g-x_{\eta} h\right)_{i-\frac{1}{2}, j}+\left(-y_{\xi} g+x_{\xi} h\right)_{i, j+\frac{1}{2}}-\left(-y_{\xi} g+x_{\xi} h\right)_{i, j-\frac{1}{2}}=0$

procedure for the computation (example) for an element

$$
y_{\eta} g=y_{\eta} u_{x} \quad \rightarrow \quad\left(y_{\eta} u_{x}\right)_{i+\frac{1}{2}, j}=\left(y_{\eta}\right)_{i+\frac{1}{2}, j} \cdot\left(\xi_{x} u_{\xi}+\eta_{x} u_{\eta}\right)_{i+\frac{1}{2}, j}
$$

For this we need the metric terms at the point $i+\frac{1}{2}, j$, we can compute these for example by second-order accurate central differences (other formulations possible)

$$
y_{\eta, i+\frac{1}{2}, j}=\frac{y_{B}-y_{A}}{\Delta \eta}=\frac{y_{B}-y_{A}}{1}
$$

where y_{A} and y_{B} are the averages of the surrounding 4 grid points

$$
\begin{aligned}
& y_{A}=\frac{1}{4}\left(y_{i, j}+y_{i+1, j}+y_{i, j-1}+y_{i+1, j-1}\right) \\
& y_{B}=\frac{1}{4}\left(y_{i, j}+y_{i+1, j}+y_{i, j+1}+y_{i+1, j+1}\right)
\end{aligned}
$$

The other metric terms, e.g., ξ_{x}, η_{x}, etc, can also be first transformed to the inverse metric terms and then be discretized at $i+\frac{1}{2}, j$ in a similar manner. The terms u_{ξ} and u_{η} can be computed as simple central differences on the computational mesh, e.g.

$$
u_{\xi, i+\frac{1}{2}, j}=\frac{u_{i+1, j}-u_{i, j}}{1}
$$

(b) finite volume formulation

$$
\begin{array}{rc}
\int_{\tau} \nabla \cdot \vec{f} d \tau=\oint_{A} \vec{f} \cdot \vec{n} d A & \vec{f}=\binom{g}{h} \\
\rightarrow \quad \oint_{A} g d y-h d x=0
\end{array}
$$

Possible discretization with node-centered formulation (for mathematical positive direction)

$$
\begin{aligned}
(g \Delta y)_{i+\frac{1}{2}, j} & -(h \Delta x)_{i+\frac{1}{2}, j}+(g \Delta y)_{i, j+\frac{1}{2}}-(h \Delta x)_{i, j+\frac{1}{2}} \\
+(g \Delta y)_{i-\frac{1}{2}, j} & -(h \Delta x)_{i-\frac{1}{2}, j}+(g \Delta y)_{i, j-\frac{1}{2}}-(h \Delta x)_{i, j-\frac{1}{2}}=0
\end{aligned}
$$

where the corresponding signs (+ for flux entering the volume, - for flux leaving the volume) are contained in the Δ terms:

$$
\begin{array}{rlr}
\Delta x_{i+\frac{1}{2}, j}=x_{B}-x_{A} & \Delta y_{i+\frac{1}{2}, j}=y_{B}-y_{A} \\
\Delta x_{i-\frac{1}{2}, j}=x_{D}-x_{C} & \Delta y_{i-\frac{1}{2}, j}=y_{D}-y_{C} \\
\Delta x_{i, j+\frac{1}{2}}=x_{C}-x_{B} & \Delta y_{i, j+\frac{1}{2}}=y_{C}-y_{B} \\
\Delta x_{i, j-\frac{1}{2}}=x_{A}-x_{D} & \Delta y_{i, j-\frac{1}{2}}=y_{A}-y_{D}
\end{array}
$$

give the surface over which the flux is integrated and the correct sign. The coordinates at points A, B, C, and D are computed by averages of the surrouding four grid points, as shown before.
(c) curvilinear form

$$
\begin{array}{rllll}
\left(y_{\eta} \cdot g\right)_{i+\frac{1}{2}, j} & -\left(x_{\eta} \cdot h\right)_{i+\frac{1}{2}, j} & -\left(y_{\eta} \cdot g\right)_{i-\frac{1}{2}, j} & +\left(x_{\eta} \cdot h\right)_{i-\frac{1}{2}, j} & \tag{1}\\
-\left(y_{\xi} \cdot g\right)_{i, j+\frac{1}{2}} & +\left(x_{\xi} \cdot h\right)_{i, j+\frac{1}{2}} & +\left(y_{\xi} \cdot g\right)_{i, j-\frac{1}{2}} & -\left(x_{\xi} \cdot h\right)_{i, j-\frac{1}{2}} & =0
\end{array}
$$

finite volume formulation

$$
\begin{array}{rllll}
(\Delta y \cdot g)_{i+\frac{1}{2}, j} & -(\Delta x \cdot h)_{i+\frac{1}{2}, j} & +(\Delta y \cdot g)_{i-\frac{1}{2}, j} & -(\Delta x \cdot h)_{i-\frac{1}{2}, j} \tag{2}\\
+(\Delta y \cdot g)_{i, j+\frac{1}{2}} & -(\Delta x \cdot h)_{i, j+\frac{1}{2}} & +(\Delta y \cdot g)_{i, j-\frac{1}{2}} & -(\Delta x \cdot h)_{i, j-\frac{1}{2}} & =0
\end{array}
$$

the metric coefficients, e.g., x_{η}, y_{ξ}, etc, are then equal to the lengths from the finite volume approach Δx and Δy. For example for surface $i+\frac{1}{2}, j$ we have the metric terms

$$
\begin{aligned}
& x_{\eta, i+\frac{1}{2}, j}=\frac{x_{B}-x_{A}}{\Delta \eta}=\frac{\Delta x_{i+\frac{1}{2}, j}}{1} \\
& y_{\eta, i+\frac{1}{2}, j}=\frac{y_{B}-y_{A}}{\Delta \eta}=\frac{\Delta y_{i+\frac{1}{2}, j}}{1}
\end{aligned}
$$

The opposite signs in eqs. 1 and 2 are caused by opposite signs in metric terms in comparison with the lengths, for example

$$
-\left(y_{\eta} \cdot g\right)_{i-\frac{1}{2}, j}=-\frac{y_{C}-y_{D}}{\Delta \eta}(g)_{i-\frac{1}{2}, j}=\frac{y_{D}-y_{C}}{\Delta \eta}(g)_{i-\frac{1}{2}, j}=\Delta y_{i-\frac{1}{2}, j}(g)_{i-\frac{1}{2}, j}
$$

as we compute the metric terms going into positive ξ and η direction, but for the lengths in the finite volume approach we follow the surface in positive rotation direction, here counterclockwise.

