
Computational Fluid Dynamics I

Exercise 7

1. Given is the PDE (convection-diffusion equation):

L(u) = ut + a ux − νuxx = 0 with a = const., ν = const. ≥ 0

Check the convergence of the following generalised difference scheme with central
differences:

L∆(u) =
un+1
i − uni

∆t
+ (1−Θ)Res∆(un) + ΘRes∆(un+1) = 0

with Res∆(u) =
a

2∆x
(ui+1 − ui−1)− ν

∆x2
(ui+1 − 2ui + ui−1)

and the discretisation factor Θ:

Θ = 0 explicit scheme O (∆t,∆x2)
n• • •
n+1•

Θ =
1

2
implicit scheme O (∆t2,∆x2)
(Crank-Nicholson) n• • •

n+1• • •

Θ = 1 implicit scheme O (∆t,∆x2) n+1• • •
• n

Check with the general solution for L∆(u) the special cases
Θ = 0, 1

2
, 1 and the

convection-diffusion equation : a 6= 0 ν 6= 0
convection equation : a 6= 0 ν = 0
diffusion equation : a = 0 ν 6= 0



Computational Fluid Dynamics I

Exercise 7 (solution)

1. (a) From Lax’s theorem the convergence of a finite difference equation for an initial
value problem requires consistency and stability.

consistency (see as well exercise 4):

separate checking time and space using Taylor series expansion in x− and
t−direction:

t : un+1−un
∆t

= ut|n + ∆t
2
utt|n + ∆t2

6
uttt|n + . . .

x : Res∆(u) = aux|i − νuxx|i + a(∆x2

6
uxxx|i + . . .)− ν(∆x2

12
uxxxx|i + . . .)

= Res(u) +O (∆x2)

t : Res∆(un+1) = Res∆(un) + (Res∆(un))t|n∆t + (Res∆(un))tt|n∆t2

2
+ . . .

= Res(un) + (Res(un))t|n∆t +O (∆t2,∆x2)
apply to the difference scheme (with ut = −Res(u)⇐⇒ utt = −(Res(u))t ):
ut +Res(u) = (Θ− 1

2
)∆tutt +O (∆t2,∆x2) =⇒ consistent for ∆x,∆t → 0

accuracy: O (∆t ,∆x2), if Θ 6= 1
2

O (∆t2,∆x2), if Θ = 1
2

stability: von Neumann analysis (approach see exercise 6):

V n+1eiΦI − V neiΦI

∆t

+(1−Θ)V n
( a

2∆x

(
e(i+1)ΦI − e(i−1)ΦI

)
− ν

∆x2

(
e(i+1)ΦI − 2eiΦI + e(i−1)ΦI

))
+ΘV n+1

( a

2∆x

(
e(i+1)ΦI − e(i−1)ΦI

)
− ν

∆x2

(
e(i+1)ΦI − 2eiΦI + e(i−1)ΦI

))
= 0

with c = a∆t
∆x

and σ = ν∆t
∆x2

follows:

G =
V n+1

V n
=

1− (1−Θ)(2σ(1− cos(Φ)) + cI sin(Φ))

1 + Θ(2σ(1− cos(Φ)) + cI sin(Φ))

stability condition:

=⇒ |G|2 =
(1− (1−Θ)2σ(1− cos(Φ)))2 + ((1−Θ)c sin(Φ))2

(1 + Θ2σ(1− cos(Φ)))2 + (Θc sin(Φ))2 ≤ 1

⇐⇒ (1− 2Θ) (4σ2(1− cos(Φ))2 + c2 sin2(Φ))︸ ︷︷ ︸
≥0

− 4σ(1− cos(Φ))︸ ︷︷ ︸
≥0

≤ 0

=⇒ scheme is unconditionally stable for Θ ≥ 1
2



analysis for 0 ≤ Θ < 1
2
:

with sin2(Φ) = 1− cos2(Φ) = (1 + cos(Φ))(1− cos(Φ)):

=⇒ (1− 2Θ)(c2 + 4σ2)︸ ︷︷ ︸
≥0

+ (1− 2Θ)︸ ︷︷ ︸
>0

(c2 − 4σ2) cos(Φ)− 4σ︸︷︷︸
≥0

≤ 0

for c2 − 4σ2 > 0 is cos(Φ) = 1 the adverse case:

=⇒ (1− 2Θ)c2 ≤ 2σ

for c2 − 4σ2 ≤ 0 is cos(Φ) = −1 the adverse case:

=⇒ (1− 2Θ)σ ≤ 1

2

the outcome of this is the following stability range:

0
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1

0 0.5 1 1.5 2

(1− 2Θ)σ

(1− 2Θ)c

stability range for 0 ≤ Θ < 1
2

stable region

instable region

(1− 2Θ)σ > 1
2

(1− 2Θ)σ < 1
2
((1− 2Θ)c)2

summary:

From consistency and stability follows convergence (theorem of Lax).

• consistency of the difference approximation is obtained for all parameters
(Θ, ν, a)

• stability is obtained

? 1
2
≤ Θ ≤ 1 for all values of (ν, a)

? 0 ≤ Θ < 1
2

see diagram

• instability is obtained for

? 0 ≤ Θ < 1
2

for the pure convection equation (ν = 0 or σ = 0)

? 0 ≤ Θ < 1
2

and σ > 1
2(1−2Θ)

for the pure diffusion equation

(a = 0 or c = 0)
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