Computational Fluid Dynamics I

Exercise 4

1. The vorticity transport equation for unsteady one-dimensional flow is given:

$$
\omega_{t}+u \omega_{x}=\nu \omega_{x x}
$$

The viscosity $\nu(\nu>0)$ and the velocity $u=u(x, t)$ are assumed to be known. The equation should discretised for constant time and spatial steps $\Delta t, \Delta x$:

$$
x_{i}=i \Delta x, \quad t^{n}=n \Delta t, \quad \omega\left(x_{i}, t^{n}\right)=\omega_{i}^{n}
$$

(a) Determine with the help of Taylor series:

- ω_{t} for t^{n}, resp. t^{n+1} (forward, resp. backward difference)
- ω_{x} and $\omega_{x x}$ around x_{i} (central differences)
(b) Formulate an explicit and an implicit solution scheme for the PDE and check the consistency.

Computational Fluid Dynamics I

Exercise 4 (solution)

1. (a) Discretisation of the time derivative:

Formulate Taylor series expansion for $\omega^{\mathbf{n}+\mathbf{1}}$ around $\omega^{\mathbf{n}}$:

$$
\omega_{i}^{n+1}=\omega_{i}^{n}+\left.\omega_{t}\right|_{i} ^{n} \Delta t+\left.\omega_{t t}\right|_{i} ^{n} \frac{\Delta t^{2}}{2!}+\ldots
$$

and reformulate to get forward difference:

$$
\left.\omega_{t}\right|_{i} ^{n}=\frac{\omega_{i}^{n+1}-\omega_{i}^{n}}{\Delta t}-\left.\omega_{t t}\right|_{i} ^{n} \frac{\Delta t}{2}+\ldots
$$

Formulate Taylor series expansion for $\omega^{\mathbf{n}}$ around $\omega^{\mathbf{n}+\mathbf{1}}$:

$$
\omega_{i}^{n}=\omega_{i}^{n+1}-\left.\omega_{t}\right|_{i} ^{n+1} \Delta t+\left.\omega_{t t}\right|_{i} ^{n+1} \frac{\Delta t^{2}}{2!}+\ldots
$$

and reformulate to get backward difference:

$$
\left.\omega_{t}\right|_{i} ^{n+1}=\frac{\omega_{i}^{n+1}-\omega_{i}^{n}}{\Delta t}+\left.\omega_{t t}\right|_{i} ^{n+1} \frac{\Delta t}{2}+\ldots
$$

Discretisation of the spatial derivative:
Formulate Taylor series expansion for ω_{i+1} and ω_{i-1} around ω_{i} :

$$
\omega_{i \pm 1}^{n}=\omega_{i}^{n} \pm\left.\omega_{x}\right|_{i} ^{n} \Delta x+\left.\omega_{x x}\right|_{i} ^{n} \frac{\Delta x^{2}}{2!} \pm\left.\omega_{x x x}\right|_{i} ^{n} \frac{\Delta x^{3}}{3!}+\left.\omega_{x x x x}\right|_{i} ^{n} \frac{\Delta x^{4}}{4!}+\ldots
$$

Subtract ω_{i-1}^{n} from ω_{i+1}^{n} to get finite difference expression for ω_{x} :

$$
\left.\omega_{x}\right|_{i} ^{n}=\frac{\omega_{i+1}^{n}-\omega_{i-1}^{n}}{2 \Delta x}-\left.\omega_{x x x}\right|_{i} ^{n} \frac{\Delta x^{2}}{6}+\ldots
$$

Add ω_{i+1}^{n} and ω_{i-1}^{n} to get finite difference expression for $\omega_{x x}$:

$$
\left.\omega_{x x}\right|_{i} ^{n}=\frac{\omega_{i+1}^{n}-2 \omega_{i}^{n}+\omega_{i-1}^{n}}{\Delta x^{2}}-\left.\omega_{x x x x}\right|_{i} ^{n} \frac{\Delta x^{2}}{12}+\ldots
$$

(b) - Explicit solution scheme:

$$
\underbrace{\frac{\omega_{i}^{n+1}-\omega_{i}^{n}}{\Delta t}}_{\text {forward } \omega_{t}}+u_{i}^{n} \underbrace{\frac{\omega_{i+1}^{n}-\omega_{i-1}^{n}}{2 \Delta x}}_{\text {central } \omega_{x}}-\nu \underbrace{\frac{\omega_{i+1}^{n}-2 \omega_{i}^{n}+\omega_{i-1}^{n}}{\Delta x^{2}}}_{\text {central } \omega_{x x}}=0
$$

Explicit, since only one term ω_{i}^{n+1} is defined at the highest time level $(n+1)$, thus the equation can be explicitly solved.

$$
\Rightarrow \quad \omega_{i}^{n+1}=f_{i}\left(\omega^{n}, u^{n}, \nu, \Delta t, \Delta x\right)
$$

truncation error

$$
\begin{aligned}
\tau & =L(\omega)-L_{\Delta}(\omega) \\
& =-\left.\omega_{t t}\right|_{i} ^{n} \frac{\Delta t}{2}-\left.u \omega_{x x x}\right|_{i} ^{n} \frac{\Delta x^{2}}{6}+\left.\nu \omega_{x x x x}\right|_{i} ^{n} \frac{\Delta x^{2}}{12}+\text { terms of higher order } \\
& =\mathcal{O}\left(\Delta t, \Delta x^{2}\right) \quad \text { consistent, since } \lim _{\Delta t, \Delta x \rightarrow 0} \tau=0
\end{aligned}
$$

- Implicit solution scheme:

$$
\underbrace{\frac{\omega_{i}^{n+1}-\omega_{i}^{n}}{\Delta t}}_{\text {backward } \omega_{t}}+u_{i}^{n+1} \underbrace{\frac{\omega_{i+1}^{n+1}-\omega_{i-1}^{n+1}}{2 \Delta x}}_{\text {central } \omega_{x}}-\nu \underbrace{\frac{\omega_{i+1}^{n+1}-2 \omega_{i}^{n+1}+\omega_{i-1}^{n+1}}{\Delta x^{2}}}_{\text {central } \omega_{x x}}=0
$$

Several terms $\omega_{i}^{n+1}, \omega_{i-1}^{n+1}$, and ω_{i+1}^{n+1} are defined at the highest time level $(n+1)$, therefore the equation can not be explicityly solved. The unknowns at the highest time level are implicityly coupled and build a tridiagonal system of equations:
\Rightarrow tridiagonal system of equations $\quad a_{i} \omega_{i-1}^{n+1}+b_{i} \omega_{i}^{n+1}+c_{i} \omega_{i+1}^{n+1}=f_{i}\left(\omega^{n}, u^{n}, \nu, \Delta t, \Delta x\right)$
truncation error

$$
\begin{aligned}
\tau & =\left.\omega_{t t}\right|_{i} ^{n+1} \frac{\Delta t}{2}-\left.u \omega_{x x x}\right|_{i} ^{n+1} \frac{\Delta x^{2}}{6}+\left.\nu \omega_{x x x x}\right|_{i} ^{n+1} \frac{\Delta x^{2}}{12}+\text { terms of higher order } \\
& =\mathcal{O}\left(\Delta t, \Delta x^{2}\right) \quad \text { consistent, since } \lim _{\Delta t, \Delta x \rightarrow 0} \tau=0
\end{aligned}
$$

