Computational Fluid Dynamics I

Exercise 4

1. The vorticity transport equation for unsteady one-dimensional flow is given:

$$\omega_t + u\omega_x = \nu\omega_{xx}$$

The viscosity ν ($\nu > 0$) and the velocity u = u(x, t) are assumed to be known. The equation should discretised for constant time and spatial steps $\Delta t, \Delta x$:

 $x_i = i\Delta x, \quad t^n = n\Delta t, \quad \omega(x_i, t^n) = \omega_i^n$

- (a) Determine with the help of Taylor series:
 - ω_t for t^n , resp. t^{n+1} (forward, resp. backward difference)
 - ω_x and ω_{xx} around x_i (central differences)
- (b) Formulate an explicit and an implicit solution scheme for the PDE and check the consistency.

Computational Fluid Dynamics I

Exercise 4 (solution)

1. (a) Discretisation of the time derivative:

Formulate Taylor series expansion for ω^{n+1} around ω^{n} :

$$\omega_i^{n+1} = \omega_i^n + \omega_t |_i^n \Delta t + \omega_{tt} |_i^n \frac{\Delta t^2}{2!} + \dots$$

and reformulate to get forward difference:

$$\omega_t |_i^n = \frac{\omega_i^{n+1} - \omega_i^n}{\Delta t} - \omega_{tt} |_i^n \frac{\Delta t}{2} + \dots$$

Formulate Taylor series expansion for $\omega^{\mathbf{n}}$ around $\omega^{\mathbf{n+1}}$:

$$\omega_{i}^{n} = \omega_{i}^{n+1} - \omega_{t}|_{i}^{n+1} \Delta t + \omega_{tt}|_{i}^{n+1} \frac{\Delta t^{2}}{2!} + \dots$$

and reformulate to get **backward difference**:

$$\omega_t|_i^{n+1} = \frac{\omega_i^{n+1} - \omega_i^n}{\Delta t} + \omega_{tt}|_i^{n+1} \frac{\Delta t}{2} + \dots$$

Discretisation of the spatial derivative:

Formulate Taylor series expansion for ω_{i+1} and ω_{i-1} around ω_i :

$$\omega_{i\pm 1}^n = \omega_i^n \pm \omega_x |_i^n \Delta x + \omega_{xx} |_i^n \frac{\Delta x^2}{2!} \pm \omega_{xxx} |_i^n \frac{\Delta x^3}{3!} + \omega_{xxxx} |_i^n \frac{\Delta x^4}{4!} + \dots$$

Subtract ω_{i-1}^n from ω_{i+1}^n to get finite difference expression for ω_x :

$$\omega_{x}|_{i}^{n} = \frac{\omega_{i+1}^{n} - \omega_{i-1}^{n}}{2\,\Delta x} - \omega_{xxx}|_{i}^{n}\frac{\Delta x^{2}}{6} + \dots$$

Add ω_{i+1}^n and ω_{i-1}^n to get finite difference expression for ω_{xx} :

$$\omega_{xx}|_{i}^{n} = \frac{\omega_{i+1}^{n} - 2\omega_{i}^{n} + \omega_{i-1}^{n}}{\Delta x^{2}} - \omega_{xxxx}|_{i}^{n} \frac{\Delta x^{2}}{12} + \dots$$

(b) • Explicit solution scheme:

$$\underbrace{\frac{\omega_i^{n+1} - \omega_i^n}{\Delta t}}_{\text{forward} \quad \omega_t} + u_i^n \underbrace{\frac{\omega_{i+1}^n - \omega_{i-1}^n}{2\,\Delta x}}_{\text{central} \quad \omega_x} - \nu \underbrace{\frac{\omega_{i+1}^n - 2\omega_i^n + \omega_{i-1}^n}{\Delta x^2}}_{\text{central} \quad \omega_{xx}} = 0$$

Explicit, since only one term ω_i^{n+1} is defined at the highest time level (n+1), thus the equation can be explicitly solved.

$$\Rightarrow \quad \omega_i^{n+1} = f_i(\omega^n, u^n, \nu, \Delta t, \Delta x)$$

truncation error

$$\tau = L(\omega) - L_{\Delta}(\omega)$$

= $-\omega_{tt}|_{i}^{n} \frac{\Delta t}{2} - u \,\omega_{xxx}|_{i}^{n} \frac{\Delta x^{2}}{6} + \nu \,\omega_{xxxx}|_{i}^{n} \frac{\Delta x^{2}}{12} + \text{terms of higher order}$
= $\mathcal{O}(\Delta t, \Delta x^{2})$ consistent, since $\lim_{\Delta t, \Delta x \to 0} \tau = 0$

• Implicit solution scheme:

$$\underbrace{\frac{\omega_i^{n+1} - \omega_i^n}{\Delta t}}_{\text{backward } \omega_t} + u_i^{n+1} \underbrace{\frac{\omega_{i+1}^{n+1} - \omega_{i-1}^{n+1}}{2\Delta x}}_{\text{central } \omega_x} - \nu \underbrace{\frac{\omega_{i+1}^{n+1} - 2\omega_i^{n+1} + \omega_{i-1}^{n+1}}{\Delta x^2}}_{\text{central } \omega_{xx}} = 0$$

Several terms ω_i^{n+1} , ω_{i-1}^{n+1} , and ω_{i+1}^{n+1} are defined at the highest time level (n+1), therefore the equation can not be explicitly solved. The unknowns at the highest time level are implicitly coupled and build a tridiagonal system of equations:

$$\Rightarrow \text{ tridiagonal system of equations} \qquad a_i \omega_{i-1}^{n+1} + b_i \omega_i^{n+1} + c_i \omega_{i+1}^{n+1} = f_i(\omega^n, u^n, \nu, \Delta t, \Delta x)$$

truncation error

$$\tau = \omega_{tt}|_{i}^{n+1} \frac{\Delta t}{2} - u \,\omega_{xxx}|_{i}^{n+1} \frac{\Delta x^{2}}{6} + \nu \,\omega_{xxxx}|_{i}^{n+1} \frac{\Delta x^{2}}{12} + \text{terms of higher order} = \mathcal{O}(\Delta t, \Delta x^{2}) \qquad \text{consistent, since } \lim_{\Delta t, \Delta x \to 0} \tau = 0$$