Projekt-, Bachelor- und Masterarbeiten

Der Lehrstuhl für Strömungslehre bietet innerhalb seiner Forschungsschwerpunkte verschiedene Möglichkeiten für Studierende, Absolventen und zukünftige Diplomanden an den Lehr- und Forschungsaktivitäten teilzunehmen.

Ansprechpartner numerische Arbeiten: Dr.-Ing. M. Meinke

Ansprechparnter experimentelle Arbeiten: Dr.-Ing. M. Klaas

Auch wenn im Folgenden keine Studien-, Diplom-, Master-, Bachelor- oder Projektarbeiten aufgeführt sind können Sie sich bei Interesse gerne jederzeit an die oben genannten Ansprechpartner wenden.

Angebotene Bachelorarbeiten:

ThemaDownload
Validation of the flame-sound interaction ---
Analysis of time-filtering methods for wall-stress models in LES at high Reynolds numbersDownload
At high Reynolds numbers in the order of 10 000 000, which are frequently encountered in aerospace applications, the size of turbulent structures is so small that high-fidelity large-eddy simulations (LES) become unfeasible even on modern supercomputers. However, high resolution of the near-wall region is necessary to accurately predict wall-shear stress and guarantee a proper development of the boundary layer. To overcome this problem various wall-modeling approaches have been developed, that compute the correct wall-shear stress from the outer boundary layer and therefore allow for a significant reduction of the number of cells in the computational mesh. Simply computing the local wall-shear stress based on instantaneous data from the outer boundary layer transfers the dynamics of the outer layer turbulence to the boundary surface. In reality, however, the dynamics at the wall are suppressed significantly by the viscous sublayer. Therefore, the wall-model introduces a modeling error in the instantaneous behaviour of the wall-shear stress while giving correct predictions with respect to the temporal mean. In this thesis various time-filtering procedures with respect to the sampled data from the outer boundary layer and their effect on the predicted wall-shear stress will be analyzed. This requires the implementation of the filtering procedures into the multiphysics framework m-AIA. The implemented filtering strategies will then be evaluated by conducting multiple LES of a turbulent channel flow on the RWTH High Perfomance Computer CLAIX and analyzing characteristic properties the of boundary layer flow with respect to the literature.
Aerodnamische Parameter des Speedskydiving---

Angebotene Masterarbeiten:

ThemaDownload
Implementation of a transport equation for the air humidity to analyze nasal cavity flowsDownload
Methods to diagnose pathologies in the human respiratory system have evolved recently from mainly focusing on medical imaging data to the consideration of computational fluid dynamics (CFD). In the past, the thermal lattice-Boltzmann (TLB) solver of the simulation framework multiphysics Aerodynamisches Institut Aachen (m-AIA) has been frequently used to numerically qualify the nasal cavity by analyzing the fluid mechanical properties of the respiratory flow, such as the pressure loss, the temperature distribution, and the mass flux distribution. However, an important quantity that has not been considered so far in these studies is the humidity of the inhailed air. Dry nasal passages can lead to discomfort and irritated sinuses and in the worst case to lung infections.
Topics in multiphase flow simulations using the Lattice Boltzmann MethodDownload
Conservative interface tracking methods for multiphase flowsDownload
Using super-resolution networks to generate highly resolved computed tomography images from recordings with low resolutionsDownload
Numerische Analyse partikelbeladener turbulenter StrömungenDownload
Fast alle Strömungen, die in der Umwelt und Technik vorkommen, sind turbulent. Jedoch ist bereits die numerische Simulation einphasiger turbulenter Strömungen aufwendig, wobei es viele erfolgreiche Modellierungsansätze gibt. Eine noch größere Herausforderung besteht hingegen in der numerischen Analyse partikelbeladener turbulenter Strömungen. Trotz ihrer hohen Relevanz in Umwelt und Technik, sind vorhandene Modelle nur für vereinfachte Bedingungen gültig und eine Validierung steht oft noch aus. Ein wichtiger Anwendungsfall ist die numerische Auslegung einer Biomasse-Brennkammer. Dabei ist die Bestimmung der Aufheizraten, der Dynamik, und der turbulenten Durchmischung nicht-sphärischer Partikel entscheidend um den gesamten Verbrennungsprozess zuverlässig auszulegen. Die Generierung von hoch-aufgelösten Referenzdaten mit Hilfe von Simulationen und die Entwicklung von genauen Modellen für Anwender, sowie deren Validierung sind aktuelle Forschungsvorhaben, die am Aerodynamischen Institut intensiv verfolgt werden. Für dieses Projekt sind wir auf der Suche nach motivierten Masterarbeitern.
Numerical analysis of control of shock-wave / boundary layer interaction using air-jet vortex-generatorDownload
Multiphysics simulations with applications to aeroacousticsDownload
Injection and Turbulent Mixture Formation of Bio-Hybrid Fuels in Internal Combustion EnginesDownload
Landing gear noise mitigation using porous materialsDownload
Active drag reduction in turbulent boundary layer flows subjected to spanwise traveling transversal surface waves using learning-enhanced CFDDownload
Numerical analysis of turbulent particle-laden flowsDownload
Thermoacoustic Investigations of Hydrogen-Air FlamesDownload
Rim seal gap sealingDownload
Researching the multiphase flows of the Precise Electrochemical Machining (PECM) processDownload
Automated assistance for diagnoses and treatments in rhinologyDownload
Numerical simulation of biomass particles in turbulent flowDownload