Tutorenprogramm - Strömungsmechanik I Wintersemester 2013/14 Turbulente Rohrströmungen - Musterlösung

1. Aufgabe

- 1. $f = \overline{f} + f'$ mit \overline{f} : zeitl. gem. Größe; f' : Schwankungsgröße
- 2. Konti.-Gl.:

$$\frac{\overline{\partial (\overline{u} + u')}}{\partial x} + \frac{\overline{\partial (\overline{v} + v')}}{\partial y} = 0 \quad \Rightarrow \quad \frac{\partial \overline{u}}{\partial x} + \frac{\partial \overline{v}}{\partial y} = 0$$

Impulsgleichung:

$$\begin{split} &\rho\left[\frac{\partial}{\partial x}[(\overline{u}+u')(\overline{u}+u')]+\frac{\partial}{\partial y}[(\overline{u}+u')(\overline{v}+v')]\right]=\\ &=-\frac{\partial}{\partial x}(\overline{p}+p')+\eta\left[\frac{\partial^2(\overline{u}+u')}{\partial x^2}+\frac{\partial^2(\overline{u}+u')}{\partial y^2}\right]\\ &\rho\left[\frac{\partial}{\partial x}[(\overline{uu}+\overline{u'u'})]+\frac{\partial}{\partial y}[(\overline{uv}+\overline{u'v'})]\right]=-\frac{\partial\overline{p}}{\partial x}+\eta\left[\frac{\partial^2\overline{u}}{\partial x^2}+\frac{\partial^2\overline{u}}{\partial y^2}\right]\\ &\rho\left[\overline{u}\frac{\partial\overline{u}}{\partial x}+\overline{u}\frac{\partial\overline{u}}{\partial x}+\frac{\partial(\overline{u'u'})}{\partial x}+\overline{u}\frac{\partial\overline{v}}{\partial y}+\overline{v}\frac{\partial\overline{u}}{\partial y}+\frac{\partial(\overline{u'v'})}{\partial y}\right]=-\frac{\partial\overline{p}}{\partial x}+\eta\left[\frac{\partial^2\overline{u}}{\partial x^2}+\frac{\partial^2\overline{u}}{\partial y^2}\right]\\ &\text{mit Konti: }\overline{u}\frac{\partial\overline{u}}{\partial x}+\overline{u}\frac{\partial\overline{v}}{\partial y}=\overline{u}\left[\frac{\partial\overline{u}}{\partial x}+\frac{\partial\overline{v}}{\partial y}\right]=0\\ &\rho\left[\overline{u}\frac{\partial\overline{u}}{\partial x}+\overline{v}\frac{\partial\overline{u}}{\partial y}\right]=-\frac{\partial\overline{p}}{\partial x}+\frac{\partial}{\partial x}\left[\eta\frac{\partial\overline{u}}{\partial x}-\rho(\overline{u'u'})\right]+\frac{\partial}{\partial y}\left[\eta\frac{\partial\overline{u}}{\partial y}-\rho(\overline{u'v'})\right] \end{split}$$

3.
$$\tau_{ges} = \tau_t + \tau_l = -\rho \overline{u'v'} + \eta \frac{d\overline{u}}{dy}$$

 τ_t : turbulente bzw. scheinbare Schubspannung

 τ_l : laminare bzw. molekulare Schubspannung

4. Ja, mit dem Ansatz von Boussinesq.

Die 'neue', scheinbare Viskosität ist keine reine Stoffgröße, sondern neben den Fluideigenschaften auch von den Strömungsbedingungen abhängig.

Quelle: Herbst 2011

2. Aufgabe

- 1. inkompressible, reibungsfreie, stationäre Strömung entlang einer Stromlinie.
- 2. Das Bingham-Fluid ist weder Fluid noch Festkörper. Sie verträgt ohne in Bewegung zu geraten eine endliche Schubspannung τ_0 , sodass sie nicht als Fluid angesehen werden kann. Wird τ_0 überschritten, strömt sie wie ein Fluid.



3. Die turbulente Schubspannung setzt sich aus dem molekularen oder laminaren τ_l und dem turbulenten Anteil τ_t zusammen:

$$\tau = \tau_t + \tau_l = -\rho \overline{u'v'} + \eta \frac{d\overline{u}}{dy} = \eta_t \frac{d\overline{u}}{dy} + \eta \frac{d\overline{u}}{dy} = \rho l^2 \left| \frac{d\overline{u}}{dy} \right| \frac{d\overline{u}}{dy} + \eta \frac{d\overline{u}}{dy}$$

- 4. Der Mischungsweg ist die Strecke in Richtung der Normalen, die ein Turbulenzballen mit seiner Geschwindigkeit zurücklegen muss, damit die Differenz zwischen seiner Geschwindigkeit und der Geschwindigkeit der neuen Schicht der gemittelten absoluten Schwankungsgrösse entspricht.
- 5. Das Moody-Diagramm stellt den Zusammenhang zwischen dem Rohrreibungskoeffizienten, der Reynoldszahl und der relativen Wandrauhigkeit dar.

6.
$$\overline{fg} = \frac{1}{T} \int_{T} fg dt = \frac{1}{T} \int_{T} (\overline{f} + f')(\overline{g} + g') dt$$
$$= \frac{1}{T} \int_{T} (\overline{f} \overline{g} + f' \overline{g} + \overline{f} g' + f' g') dt$$
$$= \overline{f} \overline{g} + \overline{g} \frac{1}{T} \int_{T} f' dt + \overline{f} \int_{T} g' dt + \overline{f'} g'$$
$$= \overline{f} \overline{g} + \overline{f'} g'$$

Quelle: Herbst 2013